
Mahfoozur Rahman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5084542/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	EGFâ€functionalized lipid–polymer hybrid nanoparticles of 5â€fluorouracil and sulforaphane with enhanced bioavailability and anticancer activity against colon carcinoma. Biotechnology and Applied Biochemistry, 2022, 69, 2205-2221.	1.4	9
2	Hispolon-Loaded Liquid Crystalline Nanoparticles: Development, Stability, In Vitro Delivery Profile, and Assessment of Hepatoprotective Activity in Hepatocellular Carcinoma. ACS Omega, 2022, 7, 9452-9464.	1.6	9
3	Systematic Development of Solid Lipid Nanoparticles of Abiraterone Acetate with Improved Oral Bioavailability and Anticancer Activity for Prostate Carcinoma Treatment. ACS Omega, 2022, 7, 16968-16979.	1.6	13
4	Current status and future directions of hepatocellular carcinoma-targeted nanoparticles and nanomedicine. Expert Opinion on Drug Delivery, 2021, 18, 673-694.	2.4	17
5	<i>Prunus amygdalus</i> extract exert antidiabetic effect via inhibition of DPP-IV: <i>in-silico</i> and <i>in-vivo</i> approaches. Journal of Biomolecular Structure and Dynamics, 2021, 39, 4160-4174.	2.0	24
6	Implications of Solid Lipid Nanoparticles of Ganoderic Acid for the Treatment and Management of Hepatocellular Carcinoma. Journal of Pharmaceutical Innovation, 2021, 16, 359-370.	1.1	10
7	Systematic Development and Validation of a RP-HPLC Method for Estimation of Abiraterone Acetate and its Degradation Products. Journal of Chromatographic Science, 2021, 59, 79-87.	0.7	10
8	Nanocarriers-loaded with natural actives as newer therapeutic interventions for treatment of hepatocellular carcinoma. Expert Opinion on Drug Delivery, 2021, 18, 489-513.	2.4	11
9	Crotamiton-loaded tea tree oil containing phospholipid-based microemulsion hydrogel for scabies treatment: <i>inÂvitro</i> , <i>inÂvivo</i> evaluation, and dermatokinetic studies. Drug Delivery, 2021, 28, 1972-1981.	2.5	5
10	Nano lipidic carriers for codelivery of sorafenib and ganoderic acid for enhanced synergistic antitumor efficacy against hepatocellular carcinoma. Saudi Pharmaceutical Journal, 2021, 29, 843-856.	1.2	7
11	Lipid/polymer-based nanocomplexes in nucleic acid delivery as cancer vaccines. Drug Discovery Today, 2021, 26, 1891-1903.	3.2	19
12	Nucleic acid-loaded lipid-polymer nanohybrids as novel nanotherapeutics in anticancer therapy. Expert Opinion on Drug Delivery, 2020, 17, 805-816.	2.4	18
13	Ganoderic acid loaded nano-lipidic carriers improvise treatment of hepatocellular carcinoma. Drug Delivery, 2019, 26, 782-793.	2.5	62
14	Application of Design of Experiments (DoE) in Pharmaceutical Product and Process Optimization. , 2019, , 43-64.		54
15	Quality-by-design approach as a systematic tool for the development of nanopharmaceutical products. Drug Discovery Today, 2019, 24, 717-725.	3.2	67
16	Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin. Nanomedicine, 2018, 13, 849-870.	1.7	87
17	Preclinical renal chemo-protective potential of <i>Prunus amygdalus</i> Batsch seed coat via alteration of multiple molecular pathways. Archives of Physiology and Biochemistry, 2018, 124, 88-96.	1.0	10
18	Nanocolloidal lipidic carriers of olmesartan medoxomil surface-tailored with Concavalin-A for lectin receptor targeting. Nanomedicine, 2018, 13, 3107-3128.	1.7	17

#	Article	IF	CITATIONS
19	Fabrication, optimization, and characterization of umbelliferone β-D-galactopyranoside-loaded PLGA nanoparticles in treatment of hepatocellular carcinoma: in vitro and in vivo studies. International Journal of Nanomedicine, 2017, Volume 12, 6747-6758.	3.3	67