Miguel M Erenas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5084431/publications.pdf

Version: 2024-02-01

516710 580821 1,441 29 16 25 citations g-index h-index papers 29 29 29 1659 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Capillary microfluidic platform for sulfite determination in wines. Sensors and Actuators B: Chemical, 2022, 359, 131549.	7.8	12
2	Wireless wearable wristband for continuous sweat pH monitoring. Sensors and Actuators B: Chemical, 2021, 327, 128948.	7.8	30
3	Thread based microfluidic platform for urinary creatinine analysis. Sensors and Actuators B: Chemical, 2020, 305, 127407.	7.8	17
4	Bioactive microfluidic paper device for pesticide determination in waters. Talanta, 2020, 218, 121108.	5 . 5	28
5	Chitosan-modified cotton thread for the preconcentration and colorimetric trace determination of Co(II). Microchemical Journal, 2020, 158, 105137.	4.5	12
6	Smartphone based meat freshness detection. Talanta, 2020, 216, 120985.	5 . 5	23
7	Carbon Dioxide Sensors for Food Packaging. , 2019, , .		O
8	Ionophore-Based Optical Sensor for Urine Creatinine Determination. ACS Sensors, 2019, 4, 421-426.	7.8	27
9	General-purpose passive wireless point–of–care platform based on smartphone. Biosensors and Bioelectronics, 2019, 141, 111360.	10.1	36
10	Real time monitoring of glucose in whole blood by smartphone. Biosensors and Bioelectronics, 2019, 136, 47-52.	10.1	39
11	Smartphone-Based Diagnosis of Parasitic Infections With Colorimetric Assays in Centrifuge Tubes. IEEE Access, 2019, 7, 185677-185686.	4.2	11
12	Portable Multispectral System Based on Color Detector for the Analysis of Homogeneous Surfaces. Journal of Sensors, 2019, 2019, 1-8.	1.1	37
13	Luminescence: Solid Phase â~†. , 2018, , 281-281.		O
14	Towards an autonomous microfluidic sensor for dissolved carbon dioxide determination. Microchemical Journal, 2018, 139, 216-221.	4.5	3
15	Non-Invasive Oxygen Determination in Intelligent Packaging Using a Smartphone. IEEE Sensors Journal, 2018, 18, 4351-4357.	4.7	21
16	CONNECTED LABORATORY IN ANALYTICAL CHEMISTRY. , 2018, , .		0
17	Flexible Passive near Field Communication Tag for Multigas Sensing. Analytical Chemistry, 2017, 89, 1697-1703.	6.5	78
18	Water based-ionic liquid carbon dioxide sensor for applications in the food industry. Sensors and Actuators B: Chemical, 2017, 253, 302-309.	7.8	31

#	Article	IF	CITATIONS
19	PARTICIPATION OF HIGH SCHOOL STUDENTS IN RESEARCH PROJECTS AT UNIVERSITY. RECRUITING FUTURE RESEARCHERS., 2017, , .		O
20	Computer Vision-Based Portable System for Nitroaromatics Discrimination. Journal of Sensors, 2016, 2016, 1-10.	1.1	3
21	Surface Modified Thread-Based Microfluidic Analytical Device for Selective Potassium Analysis. Analytical Chemistry, 2016, 88, 5331-5337.	6.5	56
22	Recent developments in computer vision-based analytical chemistry: A tutorial review. Analytica Chimica Acta, 2015, 899, 23-56.	5.4	220
23	Smartphone-Based Simultaneous pH and Nitrite Colorimetric Determination for Paper Microfluidic Devices. Analytical Chemistry, 2014, 86, 9554-9562.	6.5	348
24	Use of digital reflection devices for measurement using hue-based optical sensors. Sensors and Actuators B: Chemical, 2012, 174, 10-17.	7.8	19
25	A surface fit approach with a disposable optical tongue for alkaline ion analysis. Analytica Chimica Acta, 2011, 694, 128-135.	5.4	10
26	Disposable optical tongue for alkaline ion analysis. Sensors and Actuators B: Chemical, 2011, 156, 976-982.	7.8	11
27	Mobile phone platform as portable chemical analyzer. Sensors and Actuators B: Chemical, 2011, 156, 350-359.	7.8	145
28	Use of the Hue Parameter of the Hue, Saturation, Value Color Space As a Quantitative Analytical Parameter for Bitonal Optical Sensors. Analytical Chemistry, 2010, 82, 531-542.	6.5	209
29	Potassium disposable optical sensor based on transflectance and cromaticity measurements. Sensors and Actuators B: Chemical, 2007, 127, 586-592.	7.8	15