
Yonglei Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5084152/publications.pdf Version: 2024-02-01

YONCLEL FANC

#	Article	IF	CITATIONS
1	A trigonometrically fitted explicit Numerov-type method for second-order initial value problems with oscillating solutions. Applied Numerical Mathematics, 2008, 58, 341-351.	2.1	87
2	Extended RKN-type methods for numerical integration of perturbed oscillators. Computer Physics Communications, 2009, 180, 1777-1794.	7.5	78
3	Efficient implementation of RKN-type Fourier collocation methods for second-order differential equations. Applied Numerical Mathematics, 2017, 119, 164-178.	2.1	46
4	A new pair of explicit ARKN methods for the numerical integration of general perturbed oscillators. Applied Numerical Mathematics, 2007, 57, 166-175.	2.1	32
5	Order conditions for RKN methods solving general second-order oscillatory systems. Numerical Algorithms, 2014, 66, 147-176.	1.9	31
6	Trigonometrically fitted explicit Numerov-type method for periodic IVPs with two frequencies. Computer Physics Communications, 2008, 179, 801-811.	7.5	19
7	Special extended Nyström tree theory for ERKN methods. Journal of Computational and Applied Mathematics, 2014, 263, 478-499.	2.0	11
8	EXPONENTIALLY FITTED TWO-DERIVATIVE RUNGE–KUTTA METHODS FOR THE SCHRÖDINGER EQUATION. International Journal of Modern Physics C, 2013, 24, 1350073.	1.7	10
9	A new modified embedded 5(4) pair of explicit Runge–Kutta methods for the numerical solution of the Schrödinger equation. Journal of Mathematical Chemistry, 2013, 51, 937-953.	1.5	8
10	New optimized two-derivative Runge-Kutta type methods for solving the radial Schrödinger equation. Journal of Mathematical Chemistry, 2014, 52, 240-254.	1.5	7
11	New explicit adapted Numerov methods for second-order oscillatory differential equations. Applied Mathematics and Computation, 2013, 219, 6241-6255.	2.2	6
12	Revised trigonometrically fitted two-step hybrid methods with equation dependent coefficients for highly oscillatory problems. Journal of Computational and Applied Mathematics, 2017, 318, 266-278.	2.0	6
13	A new phase-fitted modified Runge–Kutta pair for the numerical solution of the radial Schrödinger equation. Applied Mathematics and Computation, 2013, 224, 432-441.	2.2	5
14	THDRK methods with vanished phase-lag and its first derivative for the Schrödinger equation. Journal of Mathematical Chemistry, 2019, 57, 1496-1507.	1.5	5
15	A new family of A-stable Runge-Kutta methods with equation-dependent coefficients for stiff problems. Numerical Algorithms, 2019, 81, 1235-1251.	1.9	3
16	Explicit pseudo two-step exponential Runge–Kutta methods for the numerical integration of first-order differential equations. Numerical Algorithms, 2021, 86, 1143-1163.	1.9	3
17	Extended RKN methods with FSAL property for oscillatory systems. Computer Physics Communications, 2010, 181, 1538-1548.	7.5	2
18	Novel phase-fitted symmetric splitting methods for chemical oscillators. Journal of Mathematical Chemistry, 2017, 55, 238-258.	1.5	2

Yonglei Fang

#	Article	IF	CITATIONS
19	Symmetric collocation ERKN methods for general second-order oscillators. Calcolo, 2019, 56, 1.	1.1	2
20	A new embedded 4(3) pair of modified two-derivative Runge–Kutta methods with FSAL property for the numerical solution of the Schrödinger equation. Journal of Mathematical Chemistry, 2019, 57, 1413-1426.	1.5	2
21	Two-frequency trigonometrically-fitted and symmetric linear multi-step methods for second-order oscillators. Journal of Computational and Applied Mathematics, 2021, 392, 113312.	2.0	2
22	New Runge-Kutta Method for Stiff Oscillatory Problems with Two Frequencies. , 2009, , .		1
23	A new embedded 5(3) pair of modified Runge–Kutta–Nyström methods for the numerical solution of the Schrödinger equation. Journal of Mathematical Chemistry, 2014, 52, 1081-1098.	1.5	1
24	Novel Exponentially Fitted Two-Derivative Runge-Kutta Methods with Equation-Dependent Coefficients for First-Order Differential Equations. Discrete Dynamics in Nature and Society, 2016, 2016, 1-6.	0.9	1
25	Exponentially fitted symmetric and symplectic DIRK methods for oscillatory Hamiltonian systems. Journal of Mathematical Chemistry, 2018, 56, 1130-1152.	1.5	1
26	An explicit trigonometrically fitted Runge–Kutta method for stiff and oscillatory problems with two frequencies. International Journal of Computer Mathematics, 2020, 97, 85-94.	1.8	1
27	Modified THDRK methods for the numerical integration of the Schrödinger equation. International Journal of Modern Physics C, 2020, 31, 2050149.	1.7	1
28	Runge–Kutta–Nyström methods with equation dependent coefficients and reduced phase lag for oscillatory problems. Journal of Mathematical Chemistry, 2017, 55, 259-277.	1.5	0
29	Obrechkoff two-step method fitted with Fourier spectrum for undamped Duffing equation. Journal of Mathematical Chemistry, 2020, 58, 717-734.	1.5	0
30	Optimized pairs of multidimensional ERKN methods with FSAL property for multi-frequency oscillatory systems. International Journal of Computer Mathematics, 2021, 98, 1309-1326.	1.8	0
31	A novel class of explicit two-step Birkhoff-Hermite integrators for highly oscillatory second-order differential equations. International Journal of Computer Mathematics, 0, , 1-20.	1.8	0