
Spyros A Kinnas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5083980/publications.pdf

Version: 2024-02-01

SOVDOS A KINNAS

#	Article	IF	CITATIONS
1	A panel method for the prediction of unsteady performance of ducted propellers in ship behind condition. Ocean Engineering, 2022, 246, 110582.	4.3	5
2	VIScous Vorticity Equation (VISVE) model applied to 2-D turbulent flow over hydrofoils. Ocean Engineering, 2022, 256, 111416.	4.3	1
3	Parallel implementation of a VIScous Vorticity Equation (VISVE) method in 3-D laminar flow. Journal of Computational Physics, 2021, 426, 109912.	3.8	5
4	Flow past a rotating cylinder predicted by a compact Eulerian viscous vorticity method under non-inertial rotating frame. Ocean Engineering, 2021, 230, 108882.	4.3	6
5	Prediction of cavitating performance of a tip loaded propeller and its induced hull pressures. Ocean Engineering, 2021, 229, 108961.	4.3	11
6	A 3D flow separation model for open propellers with blunt trailing edge. Ocean Engineering, 2021, 233, 109054.	4.3	3
7	Local simulation of sloshing jet in a rolling tank by viscous-inviscid interaction method. Results in Engineering, 2021, 11, 100270.	5.1	8
8	A BEM/RANS Interactive Method Applied to an Axial Tidal Turbine Farm. Journal of Ship Research, 2021, 65, 320-345.	1.1	4
9	Prediction of Unsteady Developed Tip Vortex Cavitation and Its Effect on the Induced Hull Pressures. Journal of Marine Science and Engineering, 2020, 8, 114.	2.6	10
10	VIScous Vorticity Equation (VISVE) for Turbulent 2-D Flows with Variable Density and Viscosity. Journal of Marine Science and Engineering, 2020, 8, 191.	2.6	8
11	A conservative viscous vorticity method for unsteady unidirectional and oscillatory flow past a circular cylinder. Ocean Engineering, 2019, 191, 106504.	4.3	10
12	A flow separation model for hydrofoil, propeller and duct sections with blunt trailing edges. Journal of Fluid Mechanics, 2019, 861, 180-199.	3.4	6
13	Panel Method for Ducted Propellers with Sharp Trailing Edge Duct with Fully Aligned Wake on Blade and Duct. Journal of Marine Science and Engineering, 2018, 6, 89.	2.6	8
14	Particle Image Velocimetry Experiment and Computational Fluid Dynamics Simulation of Flow Around Rigid Cylinder. Journal of Offshore Mechanics and Arctic Engineering, 2018, 140, .	1.2	2
15	Prediction of Propeller-Induced Hull Pressure Fluctuations via a Potential-Based Method: Study of the Effects of Different Wake Alignment Methods and of the Rudder. Journal of Marine Science and Engineering, 2018, 6, 52.	2.6	7
16	Numerical simulation of unsteady propeller/rudder interaction. International Journal of Naval Architecture and Ocean Engineering, 2017, 9, 677-692.	2.3	28
17	A Generalized Potential/RANS Interactive Method for the Prediction of Propulsor Performance. Journal of Ship Research, 2017, 61, 214-229.	1.1	6
18	Thruster and Hull Interaction. Journal of Offshore Mechanics and Arctic Engineering, 2015, 137, .	1.2	3

Spyros A Kinnas

#	Article	IF	CITATIONS
19	A Panel Method with a Full Wake Alignment Model for the Prediction of the Performance of Ducted Propellers. Journal of Ship Research, 2015, 59, 246-257.	1.1	14
20	A Panel Method with a Full Wake Alignment Model for the Prediction of the Performance of Ducted Propellers. Journal of Ship Research, 2015, 59, 246-257.	1.1	2
21	Dedication to Professor Justin Elliot Kerwin. Journal of Ship Research, 2015, 59, 189-189.	1.1	Ο
22	On the Accurate Calculation of Effective Wake/Application to Ducted Propellers. Journal of Ship Research, 2014, 58, 70-82.	1.1	9
23	On the Accurate Calculation of Effective Wake/Application to Ducted Propellers. Journal of Ship Research, 2014, 58, 70-82.	1.1	3
24	On Fully Aligned Lifting Line Model for Propellers: An Assessment of Betz condition. Journal of Ship Research, 2014, 58, 130-145.	1.1	1
25	A Wake Model for the Prediction of Propeller Performance at Low Advance Ratios. International Journal of Rotating Machinery, 2012, 2012, 1-11.	0.8	19
26	A numerical nonlinear analysis of two-dimensional ventilating entry of surface-piercing hydrofoils with effects of gravity. Journal of Fluid Mechanics, 2010, 658, 383-408.	3.4	17
27	Prediction of Sheet Cavitation on a Rudder Subject to Propeller Flow. Journal of Ship Research, 2007, 51, 65-75.	1.1	14
28	A Note on the Bernoulli Equation for Propeller Flows: The Effective Pressure. Journal of Ship Research, 2006, 50, 355-359.	1.1	2
29	Unsteady Wake Alignment for Propellers in Nonaxisymmetric Flows. Journal of Ship Research, 2005, 49, 176-190.	1.1	19
30	Application of a Boundary Element Method in the Prediction of Unsteady Blade Sheet and Developed Tip Vortex Cavitation on Marine Propellers. Journal of Ship Research, 2004, 48, 15-30.	1.1	21
31	Performance Prediction of Surface-Piercing Propellers. Journal of Ship Research, 2004, 48, 288-304.	1.1	32
32	Foreword Special issue Dedicated to IABEM 2002. Computational Mechanics, 2003, 32, 225-225.	4.0	0
33	Modeling of Unsteady Sheet Cavitation on Marine Propeller Blades. International Journal of Rotating Machinery, 2003, 9, 263-277.	0.8	21
34	Modeling of Unsteady Sheet Cavitation on Marine Propeller Blades. International Journal of Rotating Machinery, 2003, 9, 263-277.	0.8	1
35	Numerical Modeling of Supercavitating Propeller Flows. Journal of Ship Research, 2003, 47, 48-62.	1.1	24
36	Prediction of Unsteady Effective Wake by a Euler Solver/Vortex-Lattice Coupled Method. Journal of Ship Research, 2003, 47, 131-144.	1.1	11

Spyros A Kinnas

#	Article	IF	CITATIONS
37	A BEM for the Prediction of Unsteady Midchord Face and/or Back Propeller Cavitation. Journal of Fluids Engineering, Transactions of the ASME, 2001, 123, 311-319.	1.5	51
38	Numerical Analysis of 2-D and 3-D Cavitating Hydrofoils Under a Free Surface. Journal of Ship Research, 2001, 45, 34-49.	1.1	22
39	Prediction of Non-Axisymmetric Effective Wake by a Three-Dimensional Euler Solver. Journal of Ship Research, 2001, 45, 13-33.	1.1	20
40	Cavitating Propeller Analysis Including the Effects of Wake Alignment. Journal of Ship Research, 1999, 43, 38-47.	1.1	14
41	Cavitating Propeller Experiment (CAPREX III): Measurement and Prediction of Tunnel Pressures. Journal of Ship Research, 1998, 42, 233-248.	1.1	3
42	Numerical Water Tunnel in Two and Three Dimensions. Journal of Ship Research, 1998, 42, 86-98.	1.1	10
43	Propeller Wake Sheet Roll-up Modeling in Three Dimensions. Journal of Ship Research, 1997, 41, 81-92.	1.1	11
44	Application of a Numerical Optimization Technique to the Design of Cavitating Propellers in Nonuniform Flow. Journal of Ship Research, 1997, 41, 93-107.	1.1	30
45	Experiment and Viscous Flow Analysis on a Partially Cavitating Hydrofoil. Journal of Ship Research, 1997, 41, 161-171.	1.1	16
46	A Numerical Optimization Technique Applied to the Design of Two-Dimensional Cavitating Hydrofoil Sections. Journal of Ship Research, 1996, 40, 28-38.	1.1	11
47	The local error of a low-order boundary element method at the trailing edge of a hydrofoil and its effect on the global solution. Computers and Fluids, 1994, 23, 63-75.	2.5	8
48	A numerical nonlinear analysis of the flow around two- and three-dimensional partially cavitating hydrofoils. Journal of Fluid Mechanics, 1993, 254, 151-181.	3.4	134
49	A Boundary Element Method for the Analysis of the Flow Around 3-D Cavitating Hydrofoils. Journal of Ship Research, 1993, 37, 213-224.	1.1	50
50	Boundary element method for the analysis of the unsteady flow aroundextreme propeller geometries. AIAA Journal, 1992, 30, 688-696.	2.6	70
51	Inversion of the source and vorticity equations for supercavitating hydrofoils. Journal of Engineering Mathematics, 1992, 26, 349-361.	1.2	0
52	A General Theory for the Coupling Between Thickness and Loading for Wings and Propellers. Journal of Ship Research, 1992, 36, 59-68.	1.1	14
53	The Generalized Image Model—An Application to the Design of Ducted Propellers. Journal of Ship Research, 1992, 36, 197-209.	1.1	9
54	Leading-Edge Corrections to the Linear Theory of Partially Cavitating Hydrofoils. Journal of Ship Research, 1991, 35, 15-27.	1.1	16

#	Article	IF	CITATIONS
55	Analysis of the Flow Around Supercavitating Hydrofoils with Midchord and Face Cavity Detachment. Journal of Ship Research, 1991, 35, 198-209.	1.1	3