Mei Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5083759/publications.pdf Version: 2024-02-01

1683354 1473754 33 108 5 9 citations h-index g-index papers 33 33 33 74 citing authors all docs docs citations times ranked

MELKONG

#	Article	IF	CITATIONS
1	Transverse magnetic modes in planar slot waveguides. Journal of the Optical Society of America B: Optical Physics, 2015, 32, 2052.	0.9	16
2	Transmission and dispersion of coupled double-ring resonators. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 68.	0.9	14
3	Analysis of scattering loss due to sidewall roughness in slot waveguides by variation of mode effective index. Journal of Optics (United Kingdom), 2018, 20, 025801.	1.0	12
4	Ultraviolet photodetector based on vertical β-Ga ₂ O ₃ nanowire array on GaN substrate. Materials Research Express, 2021, 8, 055903.	0.8	8
5	Improving Locking Accuracy of Resonant Optical Gyroscope by Laser and Acoustooptic Frequency Shifter Jointed Pound-Drever-Hall Technique. Fiber and Integrated Optics, 2019, 38, 106-116.	1.7	6
6	Air-Mode Photonic Crystal Micro-Ring Resonator With Enhanced Quality Factor for Refractive Index Sensing. IEEE Photonics Journal, 2020, 12, 1-11.	1.0	6
7	Transverse electric modes in planar slot waveguides. Journal of Modern Optics, 2018, 65, 111-118.	0.6	5
8	Ultraviolet-infrared dual-color photodetector based on vertical GaN nanowire array and graphene. Chinese Optics Letters, 2020, 18, 112501.	1.3	5
9	Symmetry between the transfer properties of micro-ring resonators with gain and with loss. Journal of Modern Optics, 2010, 57, 2182-2186.	0.6	4
10	Bent silicon slot waveguides with both low loss and low nonlinearity. Optical and Quantum Electronics, 2020, 52, 1.	1.5	4
11	Phase advance of photons generated in stimulated emission relative to incident light. Optik, 2016, 127, 8970-8975.	1.4	3
12	Silicon carbide and graphene based UV-IR dual-color detector. Optoelectronics Letters, 2019, 15, 170-173.	0.4	3
13	Using DFB laser self-injection locked to an optical waveguide ring resonator as a light source of Φ-OTDR. Applied Optics, 2021, 60, 9769.	0.9	3
14	Optimization of the moving averaging–moving differential algorithm for Φ-OTDR. Applied Optics, 2022, 61, 5633.	0.9	3
15	Effects of loss and gain on group-velocity control in microring resonators. Physical Review A, 2013, 88, .	1.0	2
16	Analysis on transmission characteristics of nested ring resonators. Journal of Modern Optics, 2014, 61, 1174-1179.	0.6	2
17	Study on transmission characteristics of one-dimensional photonic crystal microring resonators. Proceedings of SPIE, 2016, , .	0.8	2
18	Various resonance lineshapes available in a single microring resonator. Journal of Optics (United) Tj ETQq0 0 0	rgBT ₁ /Overl	lock_10 Tf 50 (

Μει Κονς

#	Article	IF	CITATIONS
19	A 2×2 multimode interference coupler with exponentially tapered waveguide. Journal of Modern Optics, 2007, 54, 1425-1433.	0.6	1
20	Reflection Properties of Dual-Mode Filters Consisting of a Circular Array of Microring Resonators. Fiber and Integrated Optics, 2016, 35, 239-251.	1.7	1
21	Slotted Photonic Crystal Microring Resonators. Fiber and Integrated Optics, 2017, 36, 91-100.	1.7	1
22	Comparison of Self-Injection Locking of DFB-LD by Optical Fiber and Optical Waveguide Ring Resonators. Fiber and Integrated Optics, 2019, 38, 323-332.	1.7	1
23	Huygens' principle may reveal Rayleigh scattering. Optik, 2020, 206, 163120.	1.4	1
24	Effects of thin coating on guided mode and sidewall-roughness scattering loss in slot waveguides. Physica Scripta, 2020, 95, 045502.	1.2	1
25	Fractional-order proportional integral controller based on Al-Alaoui operator for resonant optical gyro. Optical Engineering, 2019, 58, 1.	0.5	1
26	Study on mechanism of sidewall roughness scattering in slot optical waveguides by FDTD simulation. Journal of Optics (United Kingdom), 0, , .	1.0	1
27	Variations of group delay and transmittance with parameters of coupled double-ring resonators. Journal of Modern Optics, 2013, 60, 213-219.	0.6	0
28	Proposal of using slot-waveguide cavity to reduce noises in resonant integrated optical gyroscopes. , 2016, , .		0
29	Development of high precision digital driver of acoustic-optical frequency shifter for ROG. Proceedings of SPIE, 2016, , .	0.8	0
30	Study on mathematical essence of Huygens' principle. Optik, 2018, 175, 49-53.	1.4	0
31	Huygens' principle may reveal interaction between light and atoms. Optik, 2018, 171, 605-610.	1.4	0
32	Estimating relative extent of scattering loss due to sidewall roughness in slot waveguides by nw model. , 2018, , .		0
33	Resonance characteristics of TE mode in slotted photonic crystal microring resonator. , 2018, , .		0