
Torsten W Berger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5083650/publications.pdf Version: 2024-02-01

TODSTEN W REDCED

#	Article	IF	CITATIONS
1	Soil fertility relates to fungalâ€mediated decomposition and organic matter turnover in a temperate mountain forest. New Phytologist, 2021, 231, 777-790.	7.3	31
2	Modeling the biogeochemistry of sulfur in beech (Fagus sylvatica L.) stands of the Vienna Woods. Modeling Earth Systems and Environment, 2020, 6, 1557-1572.	3.4	2
3	The impact of rising temperatures on water balance and phenology of European beech (Fagus sylvatica) Tj ETQq.	1_0_7843 3.4	14 rgBT /Cvi
4	Reconstructing Soil Recovery from Acid Rain in Beech (Fagus sylvatica) Stands of the Vienna Woods as Indicated by Removal of Stemflow and Dendrochemistry. Water, Air, and Soil Pollution, 2019, 230, 30.	2.4	4
5	Fractionation of sulfur (S) in beech (Fagus sylvatica) forest soils in relation to distance from the stem base as useful tool for modeling S biogeochemistry. Modeling Earth Systems and Environment, 2017, 3, 1065-1079.	3.4	6
6	Declining atmospheric deposition of heavy metals over the last three decades is reflected in soil and foliage of 97 beech (Fagus sylvatica) stands in the Vienna Woods. Environmental Pollution, 2017, 230, 561-573.	7.5	37
7	A slight recovery of soils from Acid Rain over the last three decades is not reflected in the macro nutrition of beech (Fagus sylvatica) at 97 forest stands of the Vienna Woods. Environmental Pollution, 2016, 216, 624-635.	7.5	42
8	Novel diffusive gradients in thin films technique to assess labile sulfate in soil. Analytical and Bioanalytical Chemistry, 2016, 408, 6759-6767.	3.7	10
9	Diffusive gradients in thin films measurement of sulfur stable isotope variations in labile soil sulfate. Analytical and Bioanalytical Chemistry, 2016, 408, 8333-8341.	3.7	4
10	Predicting recovery from acid rain using the micro-spatial heterogeneity of soil columns downhill the infiltration zone of beech stemflow: introduction of a hypothesis. Modeling Earth Systems and Environment, 2016, 2, 154.	3.4	5
11	MC ICP-MS δ 34SVCDT measurement of dissolved sulfate in environmental aqueous samples after matrix separation by means of an anion exchange membrane. Analytical and Bioanalytical Chemistry, 2016, 408, 399-407.	3.7	18
12	Decomposition of beech (Fagus sylvatica) and pine (Pinus nigra) litter along an Alpine elevation gradient: Decay and nutrient release. Geoderma, 2015, 251-252, 92-104.	5.1	55
13	A new approach to predict soil temperature under vegetated surfaces. Modeling Earth Systems and Environment, 2015, 1, 32.	3.4	13
14	Does mixing of beech (Fagus sylvatica) and spruce (Picea abies) litter hasten decomposition?. Plant and Soil, 2014, 377, 217-234.	3.7	28
15	Decomposition of European beech and Black pine foliar litter along an Alpine elevation gradient: Mass loss and molecular characteristics. Geoderma, 2012, 189-190, 522-531.	5.1	37
16	Greater accumulation of litter in spruce (Picea abies) compared to beech (Fagus sylvatica) stands is not a consequence of the inherent recalcitrance of needles. Plant and Soil, 2012, 358, 349-369.	3.7	55
17	Carbon dioxide emissions of soils under pure and mixed stands of beech and spruce, affected by decomposing foliage litter mixtures. Soil Biology and Biochemistry, 2010, 42, 986-997.	8.8	47
18	Nutrient fluxes in pure and mixed stands of spruce (Picea abies) and beech (Fagus sylvatica). Plant and Soil, 2009, 322, 317-342.	3.7	55

TORSTEN W BERGER

#	Article	IF	CITATIONS
19	Nutrient cycling and soil leaching in eighteen pure and mixed stands of beech (Fagus sylvatica) and spruce (Picea abies). Forest Ecology and Management, 2009, 258, 2578-2592.	3.2	43
20	Throughfall fluxes in a secondary spruce (Picea abies), a beech (Fagus sylvatica) and a mixed spruce–beech stand. Forest Ecology and Management, 2008, 255, 605-618.	3.2	63
21	Natural 15N abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils. Plant and Soil, 2007, 295, 79-94.	3.7	74
22	The role of calcium uptake from deep soils for spruce (Picea abies) and beech (Fagus sylvatica). Forest Ecology and Management, 2006, 229, 234-246.	3.2	76
23	Plant-soil feedback in spruce (Picea abies) and mixed spruce-beech (Fagus sylvatica) stands as indicated by dendrochemistry. Plant and Soil, 2004, 264, 69-83.	3.7	52
24	Soil seed banks of pure spruce (Picea abies) and adjacent mixed species stands. Plant and Soil, 2004, 264, 53-67.	3.7	15
25	Factors controlling soil carbon and nitrogen stores in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria. Forest Ecology and Management, 2002, 159, 3-14.	3.2	127
26	Response of Quercus petraea seedlings to nitrogen fertilization. Forest Ecology and Management, 2001, 149, 1-14.	3.2	45
27	Effects of calcium and aluminum chloride additions on foliar and throughfall chemistry in sugar maples. Forest Ecology and Management, 2001, 149, 75-90.	3.2	34
28	Physical top soil properties in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria. Forest Ecology and Management, 2000, 136, 159-172.	3.2	33
29	Title is missing!. Water, Air, and Soil Pollution, 1999, 116, 479-499.	2.4	6
30	Canopy leaching, dry deposition, and cycling of calcium in Austrian oak stands as a function of calcium availability and distance from a lime quarry. Canadian Journal of Forest Research, 1998, 28, 1388-1397.	1.7	11
31	Canopy leaching, dry deposition, and cycling of calcium in Austrian oak stands as a function of calcium availability and distance from a lime quarry. Canadian Journal of Forest Research, 1998, 28, 1388-1397.	1.7	1
32	Transport and fate of trifluoroacetate in upland forest and wetland ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 4499-4503.	7.1	19
33	Trifluoroacetate Retention in a Northern Hardwood Forest Soil. Environmental Science & Technology, 1997, 31, 1916-1921.	10.0	17

 $_{34}$ Deposition of atmospheric constituents and its impact on nutrient budgets of oak forests (Quercus) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $_{18}^{22}$