List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/508363/publications.pdf Version: 2024-02-01

Διοιλ Ρομανία.

#	Article	IF	CITATIONS
1	Current breakthroughs in the hardwood biorefineries: Hydrothermal processing for the co-production of xylooligosaccharides and bioethanol. Bioresource Technology, 2022, 343, 126100.	9.6	31
2	Integrated technologies for extractives recovery, fractionation, and bioethanol production from lignocellulose. , 2022, , 107-139.		1
3	Whole Cell Biocatalysis of 5-Hydroxymethylfurfural for Sustainable Biorefineries. Catalysts, 2022, 12, 202.	3.5	13
4	Current Options in the Valorisation of Vine Pruning Residue for the Production of Biofuels, Biopolymers, Antioxidants, and Bio-Composites following the Concept of Biorefinery: A Review. Polymers, 2022, 14, 1640.	4.5	19
5	Resveratrol production for the valorisation of lactose-rich wastes by engineered industrial Saccharomyces cerevisiae. Bioresource Technology, 2022, 359, 127463.	9.6	13
6	Co-production of biofuels and value-added compounds from industrial Eucalyptus globulus bark residues using hydrothermal treatment. Fuel, 2021, 285, 119265.	6.4	29
7	Biotechnological Advancements, Innovations and Challenges for Sustainable Xylitol Production by Yeast. , 2021, , 420-427.		4
8	Alternative Lime Pretreatment of Corn Stover for Second-Generation Bioethanol Production. Agronomy, 2021, 11, 155.	3.0	8
9	Hemicellulosic Bioethanol Production from Fast-Growing Paulownia Biomass. Processes, 2021, 9, 173.	2.8	14
10	Evaluation of sustainable technologies for the processing of <i>Sargassum muticum</i> : cascade biorefinery schemes. Green Chemistry, 2021, 23, 7001-7015.	9.0	6
11	Resveratrol Production from Hydrothermally Pretreated Eucalyptus Wood Using Recombinant Industrial <i>Saccharomyces cerevisiae</i> Strains. ACS Synthetic Biology, 2021, 10, 1895-1903.	3.8	17
12	Cell surface engineering of Saccharomyces cerevisiae for simultaneous valorization of corn cob and cheese whey via ethanol production. Energy Conversion and Management, 2021, 243, 114359.	9.2	27
13	L-lactic acid production from multi-supply autohydrolyzed economically unexploited lignocellulosic biomass. Industrial Crops and Products, 2021, 170, 113775.	5.2	18
14	Fast-growing Paulownia wood fractionation by microwave-assisted hydrothermal treatment: A kinetic assessment. Bioresource Technology, 2021, 338, 125535.	9.6	13
15	Galactose to tagatose isomerization by the l-arabinose isomerase from Bacillus subtilis: A biorefinery approach for Gelidium sesquipedale valorisation. LWT - Food Science and Technology, 2021, 151, 112199.	5.2	16
16	Microwave hydrothermal processing of the invasive macroalgae Sargassum muticum within a green biorefinery scheme. Bioresource Technology, 2021, 340, 125733.	9.6	22
17	Engineering aspects of hydrothermal pretreatment: From batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresource Technology, 2020, 299, 122685.	9.6	236
18	Recent trends on seaweed fractionation for liquid biofuels production. Bioresource Technology, 2020, 299, 122613.	9.6	83

#	Article	IF	CITATIONS
19	Development of a sustainable bioprocess based on green technologies for xylitol production from corn cob. Industrial Crops and Products, 2020, 156, 112867.	5.2	38
20	A Whole-Slurry Fermentation Approach to High-Solid Loading for Bioethanol Production from Corn Stover. Agronomy, 2020, 10, 1790.	3.0	18
21	Valorization of Seaweed Carbohydrates: Autohydrolysis as a Selective and Sustainable Pretreatment. ACS Sustainable Chemistry and Engineering, 2020, 8, 17143-17153.	6.7	27
22	Consolidated bioprocessing of corn cob-derived hemicellulose: engineered industrial Saccharomyces cerevisiae as efficient whole cell biocatalysts. Biotechnology for Biofuels, 2020, 13, 138.	6.2	56
23	Nanocellulose Production: Exploring the Enzymatic Route and Residues of Pulp and Paper Industry. Molecules, 2020, 25, 3411.	3.8	101
24	Sequential two-stage autohydrolysis biorefinery for the production of bioethanol from fast-growing Paulownia biomass. Energy Conversion and Management, 2020, 226, 113517.	9.2	22
25	Formosolv Pretreatment to Fractionate Paulownia Wood Following a Biorefinery Approach: Isolation and Characterization of the Lignin Fraction. Agronomy, 2020, 10, 1205.	3.0	9
26	Aqueous solutions of deep eutectic systems as reaction media for the saccharification and fermentation of hardwood xylan into xylitol. Bioresource Technology, 2020, 311, 123524.	9.6	32
27	Valorization of lignocellulosic-based wastes. , 2020, , 383-410.		11
28	Comparative study of biorefinery processes for the valorization of fast-growing Paulownia wood. Bioresource Technology, 2020, 314, 123722.	9.6	27
29	Microbial lipids from industrial wastes using xylose-utilizing Ashbya gossypii strains. Bioresource Technology, 2019, 293, 122054.	9.6	20
30	Xylose fermentation efficiency of industrial Saccharomyces cerevisiae yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways. Biotechnology for Biofuels, 2019, 12, 20.	6.2	114
31	Intensifying ethanol production from brewer's spent grain waste: Use of whole slurry at high solid loadings. New Biotechnology, 2019, 53, 1-8.	4.4	49
32	Third generation bioethanol from invasive macroalgae Sargassum muticum using autohydrolysis pretreatment as first step of a biorefinery. Renewable Energy, 2019, 141, 728-735.	8.9	59
33	Bioactive compounds recovery optimization from vine pruning residues using conventional heating and microwave-assisted extraction methods. Industrial Crops and Products, 2019, 132, 99-110.	5.2	59
34	Valorization of Eucalyptus nitens bark by organosolv pretreatment for the production of advanced biofuels. Industrial Crops and Products, 2019, 132, 327-335.	5.2	59
35	Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions. Applied Microbiology and Biotechnology, 2019, 103, 159-175.	3.6	104
36	Recombinant family 3 carbohydrate-binding module as a new additive for enhanced enzymatic saccharification of whole slurry from autohydrolyzed Eucalyptus globulus wood. Cellulose, 2018, 25, 2505-2514.	4.9	14

#	Article	IF	CITATIONS
37	HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms. Applied Microbiology and Biotechnology, 2018, 102, 4589-4600.	3.6	54
38	Valorization of pineapple waste for the extraction of bioactive compounds and glycosides using autohydrolysis. Innovative Food Science and Emerging Technologies, 2018, 47, 38-45.	5.6	53
39	Boosting bioethanol production from Eucalyptus wood by whey incorporation. Bioresource Technology, 2018, 250, 256-264.	9.6	47
40	Comparative autohydrolysis study of two mixtures of forest and marginal land resources for co-production of biofuels and value-added compounds. Renewable Energy, 2018, 128, 20-29.	8.9	33
41	Xylitol production from lignocellulosic whole slurry corn cob by engineered industrial Saccharomyces cerevisiae PE-2. Bioresource Technology, 2018, 267, 481-491.	9.6	67
42	Valorization of Wastes From Agrofood and Pulp and Paper Industries Within the Biorefinery Concept: Southwestern Europe Scenario. , 2018, , 487-504.		10
43	Microwave heating processing as alternative of pretreatment in second-generation biorefinery: An overview. Energy Conversion and Management, 2017, 136, 50-65.	9.2	251
44	Evaluation of strategies for second generation bioethanol production from fast growing biomass Paulownia within a biorefinery scheme. Applied Energy, 2017, 187, 777-789.	10.1	70
45	Comparison of microwave and conduction-convection heating autohydrolysis pretreatment for bioethanol production. Bioresource Technology, 2017, 243, 273-283.	9.6	91
46	Integrated approach for selecting efficient Saccharomyces cerevisiae for industrial lignocellulosic fermentations: Importance of yeast chassis linked to process conditions. Bioresource Technology, 2017, 227, 24-34.	9.6	66
47	Integral valorization of vine pruning residue by sequential autohydrolysis stages. Journal of Cleaner Production, 2017, 168, 74-86.	9.3	72
48	Production of Hemicellulases, Xylitol, and Furan from Hemicellulosic Hydrolysates Using Hydrothermal Pretreatment. , 2017, , 285-315.		5
49	Second-generation bioethanol of hydrothermally pretreated stover biomass from maize genotypes. Biomass and Bioenergy, 2016, 90, 42-49.	5.7	11
50	Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: An integrated and intensified approach. Renewable Energy, 2016, 95, 1-9.	8.9	65
51	Compositional features and bioactive properties of whole fraction from Aloe vera processing. Industrial Crops and Products, 2016, 91, 179-185.	5.2	30
52	Combined alkali and hydrothermal pretreatments for oat straw valorization within a biorefinery concept. Bioresource Technology, 2016, 220, 323-332.	9.6	45
53	Simultaneous Saccharification and Fermentation of Hydrothermal Pretreated Lignocellulosic Biomass: Evaluation of Process Performance Under Multiple Stress Conditions. Bioenergy Research, 2016, 9, 750-762.	3.9	21
54	Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors. Bioresource Technology, 2015, 191, 7-16.	9.6	50

#	Article	IF	CITATIONS
55	Metabolic engineering of Saccharomyces cerevisiae ethanol strains PE-2 and CAT-1 for efficient lignocellulosic fermentation. Bioresource Technology, 2015, 179, 150-158.	9.6	74
56	Biomass, sugar, and bioethanol potential of sweet corn. GCB Bioenergy, 2015, 7, 153-160.	5.6	27
57	Lignocellulosic bioethanol production with revalorization of low-cost agroindustrial by-products as nutritional supplements. Industrial Crops and Products, 2015, 64, 16-24.	5.2	32
58	Integrated approach for effective bioethanol production using whole slurry from autohydrolyzed Eucalyptus globulus wood at high-solid loadings. Fuel, 2014, 135, 482-491.	6.4	67
59	Effect of hemicellulose liquid phase on the enzymatic hydrolysis of autohydrolyzed Eucalyptus globulus wood. Biomass Conversion and Biorefinery, 2014, 4, 77-86.	4.6	23
60	Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass. Bioresource Technology, 2014, 161, 192-199.	9.6	90
61	A biorefinery approach based on fractionation with a cheap industrial by-product for getting value from an invasive woody species. Bioresource Technology, 2014, 173, 301-308.	9.6	13
62	Second generation bioethanol from steam exploded Eucalyptus globulus wood. Fuel, 2013, 111, 66-74.	6.4	64
63	Fractionation of <i>Eucalyptus globulus</i> Wood by Glycerol–Water Pretreatment: Optimization and Modeling. Industrial & Engineering Chemistry Research, 2013, 52, 14342-14352.	3.7	37
64	Invasive biomass valorization: environmentally friendly processes for obtaining second generation bioethanol and saccharides from <i>Ulex europæus</i> . Journal of Chemical Technology and Biotechnology, 2013, 88, 999-1006.	3.2	12
65	Extracting value-added products before pulping: Hemicellulosic ethanol from <i>Eucalyptus globulus</i> wood. Holzforschung, 2012, 66, 591-599.	1.9	43
66	Potential of hydrothermal treatments in lignocellulose biorefineries. Biofuels, Bioproducts and Biorefining, 2012, 6, 219-232.	3.7	109
67	Bioethanol production from autohydrolyzed Eucalyptus globulus by Simultaneous Saccharification and Fermentation operating at high solids loading. Fuel, 2012, 94, 305-312.	6.4	86
68	Fermentative production of fumaric acid from <i>Eucalyptus globulus</i> wood hydrolyzates. Journal of Chemical Technology and Biotechnology, 2012, 87, 1036-1040.	3.2	22
69	Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification. Bioresource Technology, 2011, 102, 5896-5904.	9.6	147
70	Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Bioresource Technology, 2010, 101, 8706-8712.	9.6	168
71	Experimental Assessment on the Enzymatic Hydrolysis of Hydrothermally Pretreated Eucalyptus globulus Wood. Industrial & Engineering Chemistry Research, 2010, 49, 4653-4663.	3.7	47
72	Experimental evaluation of alkaline treatment as a method for enhancing the enzymatic digestibility of autohydrolysed <i>Acacia dealbata</i> . Journal of Chemical Technology and Biotechnology, 2009, 84, 1070-1077.	3.2	24

#	Article	IF	CITATIONS
73	Processing of <i>Acacia dealbata</i> in Aqueous Media: First Step of a Wood Biorefinery. Industrial & Engineering Chemistry Research, 2009, 48, 6618-6626.	3.7	51
74	SSF production of lactic acid from cellulosic biosludges. Bioresource Technology, 2008, 99, 4247-4254.	9.6	62
75	Sugar production from cellulosic biosludges generated in a water treatment plant of a Kraft pulp mill. Biochemical Engineering Journal, 2007, 37, 319-327.	3.6	10