Jian Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5083521/publications.pdf

Version: 2024-02-01

		87843	88593
70	9,632	38	70
papers	citations	h-index	g-index
73	73	73	13538
all docs	docs citations	times ranked	citing authors
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Biomimetic high-flux proton pump constructed with asymmetric polymeric carbon nitride membrane. Nano Research, 2023, 16, 18-24.	5.8	4
2	Construction of frustrated Lewis pairs on TiO2-x derived from perovskite for enhanced photocatalytic CO2 reduction. Chemical Engineering Journal, 2022, 427, 131554.	6.6	28
3	Synthesis of atomic platinum with high loading on metal-organic sulfide. Science China Materials, 2022, 65, 1294-1302.	3.5	6
4	Bioinspired Metalation of the Metalâ€Organic Framework MILâ€125â€NH ₂ for Photocatalytic NADH Regeneration and Gasâ€Liquidâ€Solid Threeâ€Phase Enzymatic CO ₂ Reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	41
5	Bioinspired Metalation of the Metalâ€Organic Framework MILâ€125â€NH ₂ for Photocatalytic NADH Regeneration and Gasâ€Liquidâ€Solid Threeâ€Phase Enzymatic CO ₂ Reduction. Angewandte Chemie, 2022, 134, .	1.6	3
6	Bioinspired NADH Regeneration Based on Conjugated Photocatalytic Systems. Solar Rrl, 2021, 5, 2000339.	3.1	56
7	Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient Nâ€Type Organic Thermoelectrics. Advanced Materials, 2021, 33, e2006694.	11.1	91
8	Bioinspired Atomic Manganese Site Accelerates Oxo-Dehydrogenation of N-Heterocycles over a Conjugated Tri- <i>s</i> -Triazine Framework. ACS Catalysis, 2021, 11, 313-322.	5 . 5	33
9	Porous Carbon Nitride Thin Strip: Precise Carbon Doping Regulating Delocalized Ï€â€Electron Induces Elevated Photocatalytic Hydrogen Evolution. Small, 2021, 17, e2006622.	5.2	73
10	Visible-Light-Driven Photocatalytic Water Disinfection Toward Escherichia coli by Nanowired g-C3N4 Film. Frontiers in Nanotechnology, 2021, 3, .	2.4	8
11	Guanidine carbonate assisted supramolecular self-assembly for synthesizing porous g-C3N4 for enhanced photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 19939-19947.	3.8	13
12	Biomedical Applications of Metal–Organic Frameworks at the Subcellular Level. Advanced NanoBiomed Research, 2021, 1, 2100034.	1.7	8
13	Rational engineering of superaerophobic CoMoSx electrocatalysts for overall water splitting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623, 126734.	2.3	13
14	High flux photocatalytic self-cleaning nanosheet C3N4 membrane supported by cellulose nanofibers for dye wastewater purification. Nano Research, 2021, 14, 2568-2573.	5.8	30
15	Efficient Z-scheme photocatalysts of ultrathin g-C3N4-wrapped Au/TiO2-nanocrystals for enhanced visible-light-driven conversion of CO2 with H2O. Applied Catalysis B: Environmental, 2020, 263, 118314.	10.8	206
16	An Engineered Superhydrophilic/Superaerophobic Electrocatalyst Composed of the Supported CoMoS _{<i>x</i>} Chalcogel for Overall Water Splitting. Angewandte Chemie, 2020, 132, 1676-1682.	1.6	12
17	An Engineered Superhydrophilic/Superaerophobic Electrocatalyst Composed of the Supported CoMoS _{<i>x</i>} Chalcogel for Overall Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 1659-1665.	7.2	268
18	Graphitic carbon nitride doped SnO ₂ enabling efficient perovskite solar cells with PCEs exceeding 22%. Journal of Materials Chemistry A, 2020, 8, 2644-2653.	5.2	98

#	Article	IF	Citations
19	Efficient and synergistic decolourization and nitrate removal using a single-chamber with a coupled biocathode-photoanode system. Bioelectrochemistry, 2020, 132, 107439.	2.4	7
20	Preparation of Hydrophilic Conjugated Microporous Polymers for Efficient Visible Light-Driven Nicotinamide Adenine Dinucleotide Regeneration and Photobiocatalytic Formaldehyde Reduction. ACS Catalysis, 2020, 10, 12976-12986.	5.5	50
21	Graphitic Carbon Nitride Films: Emerging Paradigm for Versatile Applications. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 53571-53591.	4.0	57
22	Iron-doping Accelerating NADH Oxidation over Carbon Nitride. Chemical Research in Chinese Universities, 2020, 36, 1076-1082.	1.3	7
23	Investigation of Waterâ€Stable Perovskite DMASnI _{<i>x</i>} Br _{3â°'<i>x</i>} for Photoenzyme Catalysis in Aqueous Solution. Solar Rrl, 2020, 4, 2000559.	3.1	17
24	Construction of Thiazolo[5,4- <i>d</i>]thiazole-based Two-Dimensional Network for Efficient Photocatalytic CO ₂ Reduction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 46483-46489.	4.0	43
25	Construction of Fully Conjugated Covalent Organic Frameworks via Facile Linkage Conversion for Efficient Photoenzymatic Catalysis. Journal of the American Chemical Society, 2020, 142, 5958-5963.	6.6	177
26	Controllable synthesis for highly dispersed ruthenium clusters confined in nitrogen doped carbon for efficient hydrogen evolution. Journal of Colloid and Interface Science, 2020, 571, 205-212.	5.0	14
27	Confined Interfacial Synthesis of Highly Crystalline and Ultrathin Graphdiyne Films and Their Applications for N ₂ Fixation. Chemistry - A European Journal, 2020, 26, 7801-7807.	1.7	22
28	Single cobalt atom anchored on carbon nitride with well-defined active sites for photo-enzyme catalysis. Nano Energy, 2020, 73, 104750.	8.2	79
29	Facile assembly of a graphitic carbon nitride film at an air/water interface for photoelectrochemical NADH regeneration. Inorganic Chemistry Frontiers, 2020, 7, 2434-2442.	3.0	23
30	In-situ Construction of Superhydrophilic g-C3N4 Film by Vapor-Assisted Confined Deposition for Photocatalysis. Frontiers in Materials, 2019, 6, .	1.2	17
31	<i>In situ</i> generation of supported palladium nanoparticles from a Pd/Sn/S chalcogel and applications in 4-nitrophenol reduction and Suzuki coupling. Journal of Materials Chemistry A, 2019, 7, 4446-4450.	5.2	34
32	Flexible asymmetric supercapacitor with high energy density based on optimized MnO2 cathode and Fe2O3 anode. Chinese Chemical Letters, 2019, 30, 750-756.	4.8	39
33	Preparation of N-Graphdiyne Nanosheets at Liquid/Liquid Interface for Photocatalytic NADH Regeneration. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2740-2744.	4.0	89
34	Confined Synthesis of Two-Dimensional Covalent Organic Framework Thin Films within Superspreading Water Layer. Journal of the American Chemical Society, 2018, 140, 12152-12158.	6.6	231
35	Surface Engineering of Carbon Nitride Electrode by Molecular Cobalt Species and Their Photoelectrochemical Application. Chemistry - an Asian Journal, 2018, 13, 1539-1543.	1.7	30
36	Facile Assembly of a Largeâ€Area BNNSs Film for Oxidation/Corrosionâ€Resistant Coatings. Advanced Materials Interfaces, 2018, 5, 1800750.	1.9	14

#	Article	IF	CITATIONS
37	Synthesis of dense MoS ₂ nanosheet layers on hollow carbon spheres and their applications in supercapacitors and the electrochemical hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2018, 5, 2198-2204.	3.0	29
38	In Situ Synthesis of Highly Dispersed and Ultrafine Metal Nanoparticles from Chalcogels. Journal of the American Chemical Society, 2017, 139, 2900-2903.	6.6	68
39	Interfacial synthesis of ordered and stable covalent organic frameworks on amino-functionalized carbon nanotubes with enhanced electrochemical performance. Chemical Communications, 2017, 53, 6303-6306.	2.2	147
40	Carbon nitride nanosheets as visible light photocatalytic initiators and crosslinkers for hydrogels with thermoresponsive turbidity. Journal of Materials Chemistry A, 2017, 5, 8933-8938.	5.2	75
41	Bio-directed morphology engineering towards hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable carbon nitride assemblies for enhanced artificial photosynthesis. Journal of Materials Chemistry A, 2017, 5, 2195-2203.	5. 2	21
42	Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI ₃ . Science Advances, 2017, 3, e1701293.	4.7	325
43	Methanol Oxidation to Formate on ALD-Prepared VOx	1.5	17
44	From unstable CsSnI3 to air-stable Cs2SnI6: A lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient. Solar Energy Materials and Solar Cells, 2017, 159, 227-234.	3.0	388
45	Biomimetic polymeric semiconductor based hybrid nanosystems for artificial photosynthesis towards solar fuels generation via CO2 reduction. Nano Energy, 2016, 25, 128-135.	8.2	97
46	Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5530-5535.	3.3	211
47	Microfluidic chip-based one-step fabrication of an artificial photosystem I for photocatalytic cofactor regeneration. RSC Advances, 2016, 6, 101974-101980.	1.7	29
48	Graphitic carbon nitride "reloaded― emerging applications beyond (photo)catalysis. Chemical Society Reviews, 2016, 45, 2308-2326.	18.7	763
49	Bio-inspired double-layer structure artificial microreactor with highly efficient light harvesting for photocatalysts. RSC Advances, 2015, 5, 11096-11100.	1.7	4
50	Molecular-based design and emerging applications of nanoporous carbon spheres. Nature Materials, 2015, 14, 763-774.	13.3	838
51	Microcontactâ€Printingâ€Assisted Access of Graphitic Carbon Nitride Films with Favorable Textures toward Photoelectrochemical Application. Advanced Materials, 2015, 27, 712-718.	11.1	177
52	Bio-inspired carbon nitride mesoporous spheres for artificial photosynthesis: photocatalytic cofactor regeneration for sustainable enzymatic synthesis. Journal of Materials Chemistry A, 2014, 2, 7686-7693.	5.2	100
53	Facile synthesis of carbon-doped mesoporous anatase TiO ₂ for the enhanced visible-light driven photocatalysis. Chemical Communications, 2014, 50, 13971-13974.	2.2	143
54	The bioinspired construction of an ordered carbon nitride array for photocatalytic mediated enzymatic reduction. Physical Chemistry Chemical Physics, 2014, 16, 14699-14705.	1.3	72

#	Article	IF	CITATIONS
55	Uniform Graphitic Carbon Nitride Nanorod for Efficient Photocatalytic Hydrogen Evolution and Sustained Photoenzymatic Catalysis. ACS Applied Materials & Sustained Photoenzymatic Catalysis.	4.0	184
56	Encapsulation of lipase in mesoporous silica yolk–shell spheres with enhanced enzyme stability. RSC Advances, 2013, 3, 22008.	1.7	54
57	Facile synthesis of carbon nitride micro-/nanoclusters with photocatalytic activity for hydrogen evolution. RSC Advances, 2013, 3, 22988.	1.7	40
58	Aquatic plant inspired hierarchical artificial leaves for highly efficient photocatalysis. Journal of Materials Chemistry A, 2013, 1, 7760.	5.2	27
59	Hierarchical TiO ₂ photonic crystal spheres prepared by spray drying for highly efficient photocatalysis. Journal of Materials Chemistry A, 2013, 1, 541-547.	5.2	66
60	Bio-inspired NADH regeneration by carbon nitride photocatalysis using diatom templates. Energy and Environmental Science, 2013, 6, 1486.	15.6	214
61	Organic dye-sensitized sponge-like TiO ₂ photoanode for dye-sensitized solar cells. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120314.	1.6	7
62	Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy and Environmental Science, 2012, 5, 6717.	15.6	1,552
63	Hierarchical optical antenna: Gold nanoparticle-modified photonic crystal for highly-sensitive label-free DNA detection. Journal of Materials Chemistry, 2012, 22, 8127.	6.7	50
64	Facile Oxygen Reduction on a Threeâ€Dimensionally Ordered Macroporous Graphitic C ₃ N ₄ /Carbon Composite Electrocatalyst. Angewandte Chemie - International Edition, 2012, 51, 3892-3896.	7.2	588
65	Nanoporous Graphitic-C ₃ N ₄ @Carbon Metal-Free Electrocatalysts for Highly Efficient Oxygen Reduction. Journal of the American Chemical Society, 2011, 133, 20116-20119.	6.6	958
66	Reversibly phototunable TiO2 photonic crystal modulated by Ag nanoparticles' oxidation/reduction. Applied Physics Letters, 2011, 98, .	1.5	13
67	Facile Fabrication of Tough SiC Inverse Opal Photonic Crystals. Journal of Physical Chemistry C, 2010, 114, 22303-22308.	1.5	38
68	Enhancement of photochemical hydrogen evolution over Pt-loaded hierarchical titania photonic crystal. Energy and Environmental Science, 2010, 3, 1503.	15.6	139
69	Hierarchically Macro-/Mesoporous Tiâ^'Si Oxides Photonic Crystal with Highly Efficient Photocatalytic Capability. Environmental Science & Environmenta	4.6	97
70	Ultrasensitive DNA Detection Using Photonic Crystals. Angewandte Chemie - International Edition, 2008, 47, 7258-7262.	7.2	160