Sebastjan Glinsek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5083423/publications.pdf

Version: 2024-02-01

623734 642732 42 602 14 23 citations g-index h-index papers 43 43 43 700 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Piezoelectric Ceramics. , 2022, , 22-34.		1
2	Influence of substrate stress on in-plane and out-of-plane ferroelectric properties of PZT films. Journal of Applied Physics, 2022, 131, 014101.	2.5	5
3	Direct evidence for bulk photovoltaic charge transport in a ferroelectric polycrystalline film. Scripta Materialia, 2022, 211, 114498.	5.2	5
4	Inkjetâ€Printed Piezoelectric Thin Films for Transparent Haptics. Advanced Materials Technologies, 2022, 7, .	5.8	5
5	High Electrocaloric Effect in Lead Scandium Tantalate Thin Films with Interdigitated Electrodes. Sensors, 2022, 22, 4049.	3.8	3
6	Growth of {100}-oriented lead zirconate titanate thin films mediated by a safe solvent. Journal of Materials Chemistry C, 2021, 9, 281-287.	5.5	7
7	Highly conductive low-temperature combustion-derived transparent indium tin oxide thin film. Materials Advances, 2021, 2, 700-705.	5.4	9
8	Critical field anisotropy in the antiferroelectric switching of PbZrO3 films. Applied Physics Letters, 2021, 118, .	3.3	10
9	Enhancement of ferroelectricity and orientation in solution-derived hafnia thin films through heterogeneous grain nucleation. Applied Physics Letters, 2021, 118, .	3.3	11
10	Solution-processed BiFeO3 thin films with low leakage current. Journal of the European Ceramic Society, 2021, 41, 6449-6455.	5.7	17
11	Influence of tensile vs. compressive stress on fatigue of lead zirconate titanate thin films. Journal of the European Ceramic Society, 2021, 41, 6991-6999.	5.7	10
12	Toward low-temperature processing of lead zirconate titanate thin films: Advances, strategies, and applications. Applied Physics Reviews, 2021, 8, .	11.3	23
13	Piezoelectricity in hafnia. Nature Communications, 2021, 12, 7301.	12.8	37
14	Toward Thick Piezoelectric HfO ₂ â€Based Films. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900626.	2.4	41
15	Probing Antiferroelectricâ€Ferroelectric Phase Transitions in PbZrO ₃ Capacitors by Piezoresponse Force Microscopy. Advanced Functional Materials, 2020, 30, 2003622.	14.9	23
16	1-mW Vibration Energy Harvester Based on a Cantilever with Printed Polymer Multilayers. Cell Reports Physical Science, 2020, 1, 100068.	5.6	13
17	Fully Transparent Frictionâ€Modulation Haptic Device Based on Piezoelectric Thin Film. Advanced Functional Materials, 2020, 30, 2003539.	14.9	25
18	A film-texture driven piezoelectricity of AlN thin films grown at low temperatures by plasma-enhanced atomic layer deposition. APL Materials, 2020, 8, .	5.1	16

#	Article	IF	Citations
19	On the importance of pyrolysis for inkjet-printed oxide piezoelectric thin films. Journal of Materials Chemistry C, 2020, 8, 3740-3747.	5.5	7
20	Strong Magnetoelectric Effects of 2–2 Composites Made of AlN Films Grown by Plasma-Enhanced Atomic Layer Deposition on Magnetostrictive Foils for Energy Harvesting Applications. , 2020, , .		1
21	Low temperature growth of piezoelectric AIN films by plasma enhanced atomic layer deposition and magnetoelectric coupling with nickel for energy harvesting applications. , 2019, , .		0
22	Direct Patterning of Piezoelectric Thin Films by Inkjet Printing. Advanced Materials Technologies, 2019, 4, 1800168.	5.8	23
23	Inkjet-printed silver as alternative top electrode for lead zirconate titanate thin films. Journal of Alloys and Compounds, 2019, 783, 801-805.	5.5	7
24	Flexible vibrational energy harvesting devices using strain-engineered perovskite piezoelectric thin films. Nano Energy, 2019, 55, 182-192.	16.0	101
25	Tailoring the microstructure and dielectric properties of Ba0.5Sr0.5TiO3 thin films by solution-based processing in the frame of the Microstructural Zone Model. Journal of Alloys and Compounds, 2018, 743, 812-818.	5.5	5
26	Transparent piezoelectric transducers for large area ultrasonic actuators., 2017,,.		2
27	Transparent Ferroelectric Capacitors on Glass. Micromachines, 2017, 8, 313.	2.9	11
28	Dielectric dynamics of the polycrystalline Ba _{0.5} Sr _{0.5} TiO ₃ thin films. Europhysics Letters, 2016, 114, 47009.	2.0	2
29	Role of the microstructure in the neutron and gamma-ray irradiation stability of solution-derived Ba0.5Sr0.5TiO3 thin films. Acta Materialia, 2015, 88, 34-40.	7.9	9
30	Combined effects of thickness, grain size and residual stress on the dielectric properties of Ba0.5Sr0.5TiO3 thin films. Journal of Alloys and Compounds, 2015, 646, 766-772.	5.5	30
31	Influence of Numerical Method and Geometry Used by Maxwell's Equation Solvers on Simulations of Ferroelectric Thin-Film Capacitors. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 891-896.	4.6	2
32	Mixed Metallo-organic Precursor Systems. , 2013, , 51-69.		3
33	Low-Temperature Processing. , 2013, , 431-444.		0
34	Lattice dynamics and broad-band dielectric properties of the KTaO3 ceramics. Journal of Applied Physics, 2012, 111, .	2.5	19
35	Tailoring electrically induced properties by stretching relaxor polymer films. Journal of Applied Physics, 2012, 111, 083515.	2.5	15
36	Leadâ€Free Ferroelectric Potassium Sodium Niobate Thin Films from Solution: Composition and Structure. Journal of the American Ceramic Society, 2012, 95, 515-523.	3.8	52

#	Article	IF	CITATIONS
37	Structural evolution of the KTa0.6Nb0.4O3 alkoxide-based solutions: probing the transition metals local environment by X-ray absorption spectroscopy. Journal of Sol-Gel Science and Technology, 2012, 62, 1-6.	2.4	7
38	Ferroelectric phase transition in polycrystalline KTaO3 thin film revealed by terahertz spectroscopy. Applied Physics Letters, $2011, 99, \ldots$	3.3	26
39	KTaO3 Ceramics Prepared by the Mechanochemically Activated Solid-State Synthesis. Journal of the American Ceramic Society, 2011, 94, 1368-1373.	3.8	12
40	Combined Analytical Transmission Electron Microscopy Approach to Reliable Composition Evaluation of KTaO3. Journal of the American Ceramic Society, 2011, 94, 1611-1618.	3.8	3
41	Processing and Electric Field Dependent Dielectric Properties of KTa0.6Nb0.4O3Thin Films on Alumina. Ferroelectrics, 2009, 387, 112-117.	0.6	2
42	Subsolidus phase equilibria in the RuO2–ZnO–SiO2 system. Journal of Materials Science, 2007, 42, 5883-5885.	3.7	1