Liping Zhang

List of Publications by Citations

Source: https://exaly.com/author-pdf/5083174/liping-zhang-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28 959 14 27 h-index g-index citations papers 28 5.28 1,405 14.3 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
27	A Promoted Charge Separation/Transfer System from Cu Single Atoms and C N Layers for Efficient Photocatalysis. <i>Advanced Materials</i> , 2020 , 32, e2003082	24	144
26	Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications. <i>Applied Surface Science</i> , 2018 , 430, 2-17	6.7	141
25	Characterization of semiconductor photocatalysts. <i>Chemical Society Reviews</i> , 2019 , 48, 5184-5206	58.5	126
24	Integrating 2D/2D CdS/Fe2O3 ultrathin bilayer Z-scheme heterojunction with metallic ENiS nanosheet-based ohmic-junction for efficient photocatalytic H2 evolution. <i>Applied Catalysis B: Environmental</i> , 2020 , 266, 118619	21.8	114
23	Ultrathin Porous Carbon Nitride Bundles with an Adjustable Energy Band Structure toward Simultaneous Solar Photocatalytic Water Splitting and Selective Phenylcarbinol Oxidation. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 4815-4822	16.4	82
22	Three-dimensional assemblies of carbon nitride tubes as nanoreactors for enhanced photocatalytic hydrogen production. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 305-312	13	60
21	Assembly of TiO2 ultrathin nanosheets with surface lattice distortion for solar-light-driven photocatalytic hydrogen evolution. <i>Applied Catalysis B: Environmental</i> , 2018 , 239, 317-323	21.8	49
20	Facile formation of metallic bismuth/bismuth oxide heterojunction on porous carbon with enhanced photocatalytic activity. <i>Journal of Colloid and Interface Science</i> , 2018 , 513, 82-91	9.3	40
19	One-Pot Synthesis of MeAl2O4 (Me = Ni, Co, or Cu) Supported on EAl2O3 with Ultralarge Mesopores: Enhancing Interfacial Defects in EAl2O3 To Facilitate the Formation of Spinel Structures at Lower Temperatures. <i>Chemistry of Materials</i> , 2018 , 30, 436-446	9.6	38
18	Development of nickel-incorporated MCM-41Barbon composites and their application in nitrophenol reduction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 9618-9628	13	32
17	TiO-on-CN double-shell microtubes: In-situ fabricated heterostructures toward enhanced photocatalytic hydrogen evolution. <i>Journal of Colloid and Interface Science</i> , 2020 , 572, 22-30	9.3	30
16	Identification of preferentially exposed crystal facets by X-ray diffraction RSC Advances, 2020, 10, 55	85 ₃ 5 ₇ 589	25
15	SBA-15 templating synthesis of mesoporous bismuth oxide for selective removal of iodide. <i>Journal of Colloid and Interface Science</i> , 2017 , 501, 248-255	9.3	16
14	Strategies for development of nanoporous materials with 2D building units. <i>Chemical Society Reviews</i> , 2020 ,	58.5	16
13	Capture of Iodide by Bismuth Vanadate and Bismuth Oxide: An Insight into the Process and its Aftermath. <i>ChemSusChem</i> , 2018 , 11, 1486-1493	8.3	12
12	Single Metal Atom Decorated Carbon Nitride for Efficient Photocatalysis: Synthesis, Structure, and Applications. <i>Solar Rrl</i> , 2021 , 5, 2000609	7.1	11
11	Ultrathin Porous Carbon Nitride Bundles with an Adjustable Energy Band Structure toward Simultaneous Solar Photocatalytic Water Splitting and Selective Phenylcarbinol Oxidation. <i>Angewandte Chemie</i> , 2021 , 133, 4865-4872	3.6	6

LIST OF PUBLICATIONS

10	Fundamentals of adsorption for photocatalysis. Interface Science and Technology, 2020, 39-62	2.3	5
9	A generalized strategy for synthesizing crystalline bismuth-containing nanomaterials. <i>Nanoscale</i> , 2020 , 12, 8277-8284	7.7	4
8	Interfacial engineering by creating Cu-based ternary heterostructures on CN tubes towards enhanced photocatalytic oxidative coupling of benzylamines <i>RSC Advances</i> , 2020 , 10, 28059-28065	3.7	4
7	Constructing Pd-N interactions in Pd/g-C3N4 to improve the charge dynamics for efficient photocatalytic hydrogen evolution. <i>Nano Research</i> ,	10	2
6	A Unique Fe-N Coordination System Enabling Transformation of Oxygen into Superoxide for Photocatalytic C-H Activation with High Efficiency and Selectivity <i>Advanced Materials</i> , 2022 , e2200612	24	1
5	Do college science laboratory courses inherit the gender gap from lecture courses?. <i>Education for Chemical Engineers</i> , 2020 , 31, 38-41	2.4	O
4	Physicochemical Investigation into Major League Baseballs in the Era of Unprecedented Rise in Home Runs. <i>ACS Omega</i> , 2019 , 4, 20109-20117	3.9	0
3	Innenrāktitelbild: Ultrathin Porous Carbon Nitride Bundles with an Adjustable Energy Band Structure toward Simultaneous Solar Photocatalytic Water Splitting and Selective Phenylcarbinol Oxidation (Angew. Chem. 9/2021). <i>Angewandte Chemie</i> , 2021 , 133, 5003-5003	3.6	О
2	Creation of Mo active sites on indium oxide microrods for photocatalytic amino acid production. <i>Science China Materials</i> , 2022 , 65, 1285-1293	7.1	O
1	Rules all PIs should follow <i>Science</i> , 2022 , 376, 24-26	33.3	