
Jenny E Greene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5082577/publications.pdf Version: 2024-02-01

IENNY F CREENE

#	Article	IF	CITATIONS
1	The Hyper Suprime-Cam SSP Survey: Overview and survey design. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	566
2	Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph. Publication of the Astronomical Society of Japan, 2014, 66, .	2.5	469
3	DWARF GALAXIES WITH OPTICAL SIGNATURES OF ACTIVE MASSIVE BLACK HOLES. Astrophysical Journal, 2013, 775, 116.	4.5	362
4	Intermediate-Mass Black Holes. Annual Review of Astronomy and Astrophysics, 2020, 58, 257-312.	24.3	294
5	Observations of feedback from radio-quiet quasars – II. Kinematics of ionized gas nebulae. Monthly Notices of the Royal Astronomical Society, 2013, 436, 2576-2597.	4.4	260
6	FEEDBACK IN LUMINOUS OBSCURED QUASARS. Astrophysical Journal, 2011, 732, 9.	4.5	189
7	A â^¼50,000 <i>M</i> _⊙ SOLAR MASS BLACK HOLE IN THE NUCLEUS OF RGG 118. Astrophysical Journal Letters, 2015, 809, L14.	8.3	168
8	THE MASSIVE SURVEY. I. A VOLUME-LIMITED INTEGRAL-FIELD SPECTROSCOPIC STUDY OF THE MOST MASSIVE EARLY-TYPE GALAXIES WITHIN 108 Mpc. Astrophysical Journal, 2014, 795, 158.	4.5	154
9	A New Sample of (Wandering) Massive Black Holes in Dwarf Galaxies from High-resolution Radio Observations. Astrophysical Journal, 2020, 888, 36.	4.5	150
10	TYPE 2 ACTIVE GALACTIC NUCLEI WITH DOUBLE-PEAKED [O III] LINES. II. SINGLE AGNS WITH COMPLEX NARROW-LINE REGION KINEMATICS ARE MORE COMMON THAN BINARY AGNS. Astrophysical Journal, 2011, 735, 48.	4.5	137
11	MERGER-DRIVEN FUELING OF ACTIVE GALACTIC NUCLEI: SIX DUAL AND OF AGNs DISCOVERED WITH <i>CHANDRA</i> AND <i>HUBBLE SPACE TELESCOPE</i> OBSERVATIONS. Astrophysical Journal, 2015, 806, 219.	4.5	135
12	Galaxy interactions trigger rapid black hole growth: An unprecedented view from the Hyper Suprime-Cam survey. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	131
13	Illuminating Low Surface Brightness Galaxies with the Hyper Suprime-Cam Survey. Astrophysical Journal, 2018, 857, 104.	4.5	127
14	Low-mass black holes as the remnants of primordial black hole formation. Nature Communications, 2012, 3, 1304.	12.8	125
15	X-RAY CONSTRAINTS ON THE LOCAL SUPERMASSIVE BLACK HOLE OCCUPATION FRACTION. Astrophysical Journal, 2015, 799, 98.	4.5	109
16	THE MASSIVE SURVEY. II. STELLAR POPULATION TRENDS OUT TO LARGE RADIUS IN MASSIVE EARLY-TYPE GALAXIES. Astrophysical Journal, 2015, 807, 11.	4.5	107
17	A 17-billion-solar-mass black hole in a group galaxy with a diffuse core. Nature, 2016, 532, 340-342.	27.8	102
18	The local nanohertz gravitational-wave landscape from supermassive black hole binaries. Nature Astronomy, 2017, 1, 886-892.	10.1	99

#	Article	IF	CITATIONS
19	THE MASSIVE SURVEY. IV. THE X-RAY HALOS OF THE MOST MASSIVE EARLY-TYPE GALAXIES IN THE NEARBY UNIVERSE. Astrophysical Journal, 2016, 826, 167.	4.5	90
20	The Hubble Constant from Infrared Surface Brightness Fluctuation Distances*. Astrophysical Journal, 2021, 911, 65.	4.5	90
21	<i>CHANDRA</i> X-RAY AND <i>HUBBLE SPACE TELESCOPE</i> IMAGING OF OPTICALLY SELECTED KILOPARSEC-SCALE BINARY ACTIVE GALACTIC NUCLEI. I. NATURE OF THE NUCLEAR IONIZING SOURCES. Astrophysical Journal, 2013, 762, 110.	4.5	88
22	The MASSIVE Survey – V. Spatially resolved stellar angular momentum, velocity dispersion, and higher moments of the 41 most massive local early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 464, 356-384.	4.4	82
23	AN X-RAY-SELECTED SAMPLE OF CANDIDATE BLACK HOLES IN DWARF GALAXIES. Astrophysical Journal, 2015, 805, 12.	4.5	80
24	Individual stellar haloes of massive galaxies measured to 100 kpc at 0.3Â<ÂzÂ<Â0.5 using Hyper Suprime-Cam. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3348-3368.	4.4	78
25	Identifying AGNs in Low-mass Galaxies via Long-term Optical Variability. Astrophysical Journal, 2018, 868, 152.	4.5	77
26	MULTI-EPOCH SPECTROSCOPY OF DWARF GALAXIES WITH AGN SIGNATURES: IDENTIFYING SOURCES WITH PERSISTENT BROAD H \hat{I} ± EMISSION. Astrophysical Journal, 2016, 829, 57.	4.5	75
27	X-Ray and Ultraviolet Properties of AGNs in Nearby Dwarf Galaxies. Astrophysical Journal, 2017, 836, 20.	4.5	75
28	The MASSIVE Survey – VII. The relationship of angular momentum, stellar mass and environment of early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1428-1445.	4.4	75
29	Wide-field Survey of Dwarf Satellite Systems around 10 Hosts in the Local Volume. Astrophysical Journal, 2020, 891, 144.	4.5	62
30	MID-INFRARED COLORS OF DWARF GALAXIES: YOUNG STARBURSTS MIMICKING ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2016, 832, 119.	4.5	61
31	HOST GALAXIES OF LUMINOUS TYPE 2 QUASARS AT <i>z</i> â ¹ /4 0.5. Astrophysical Journal, 2009, 702, 1098-112	74.5	60
32	A Search for Optical AGN Variability in 35,000 Low-mass Galaxies with the Palomar Transient Factory. Astrophysical Journal, 2020, 896, 10.	4.5	59
33	THE STRUCTURE OF NUCLEAR STAR CLUSTERS IN NEARBY LATE-TYPE SPIRAL GALAXIES FROM <i>HUBBLE SPACE TELESCOPE</i> WIDE FIELD CAMERA 3 IMAGING. Astronomical Journal, 2015, 149, 170.	4.7	58
34	Massive Quenched Galaxies at zÂâ^¼Â0.7 Retain Large Molecular Gas Reservoirs. Astrophysical Journal Letters, 2017, 846, L14.	8.3	58
35	DYNAMICAL CONSTRAINTS ON THE MASSES OF THE NUCLEAR STAR CLUSTER AND BLACK HOLE IN THE LATE-TYPE SPIRAL GALAXY NGC 3621. Astrophysical Journal, 2009, 690, 1031-1044.	4.5	58
36	THE STELLAR HALOS OF MASSIVE ELLIPTICAL GALAXIES. Astrophysical Journal, 2012, 750, 32.	4.5	57

#	Article	IF	CITATIONS
37	X-RAY PROPERTIES OF INTERMEDIATE-MASS BLACK HOLES IN ACTIVE GALAXIES. III. SPECTRAL ENERGY DISTRIBUTION AND POSSIBLE EVIDENCE FOR INTRINSICALLY X-RAY-WEAK ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2012, 761, 73.	4.5	53
38	Subaru High-z Exploration of Low-Luminosity Quasars (SHELLQs). VIII. A less biased view of the early co-evolution of black holes and host galaxies. Publication of the Astronomical Society of Japan, 2019, 71, .	2.5	51
39	The MASSIVE survey – VIII. Stellar velocity dispersion profiles and environmental dependence of early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 473, 5446-5467.	4.4	50
40	The Black Hole–Bulge Mass Relation Including Dwarf Galaxies Hosting Active Galactic Nuclei. Astrophysical Journal, 2019, 887, 245.	4.5	50
41	SDSS-IV MaNGA: identification of active galactic nuclei in optical integral field unit surveys. Monthly Notices of the Royal Astronomical Society, 2018, 474, 1499-1514.	4.4	48
42	The Exploration of Local VolumE Satellites (ELVES) Survey: A Nearly Volume-limited Sample of Nearby Dwarf Satellite Systems. Astrophysical Journal, 2022, 933, 47.	4.5	47
43	The MASSIVE survey – XI. What drives the molecular gas properties of early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1404-1423.	4.4	45
44	The MASSIVE survey – III. Molecular gas and a broken Tully–Fisher relation in the most massive early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 455, 214-226.	4.4	43
45	Revealing the intermediate-mass black hole at the heart of the dwarf galaxy NGC 404 with sub-parsec resolution ALMA observations. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4061-4078.	4.4	43
46	Subaru High- <i>z</i> Exploration of Low-Luminosity Quasars (SHELLQs). III. Star formation properties of the host galaxies at <i>z</i> Â≳ 6 studied with ALMA. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	42
47	Structures of Dwarf Satellites of Milky Way-like Galaxies: Morphology, Scaling Relations, and Intrinsic Shapes. Astrophysical Journal, 2021, 922, 267.	4.5	42
48	Luminosity Functions and Host-to-host Scatter of Dwarf Satellite Systems in the Local Volume. Astrophysical Journal, 2021, 908, 109.	4.5	40
49	Discovery of a Close-separation Binary Quasar at the Heart of a zÂâ^1⁄4Â0.2 Merging Galaxy and Its Implications for Low-frequency Gravitational Waves. Astrophysical Journal Letters, 2019, 879, L21.	8.3	37
50	The Cosmic Ultraviolet Baryon Survey (CUBS) – I. Overview and the diverse environments of Lyman limit systems at <i>z</i> < 1. Monthly Notices of the Royal Astronomical Society, 2020, 497, 498-520.	4.4	37
51	SPATIALLY OFFSET ACTIVE GALACTIC NUCLEI. I. SELECTION AND SPECTROSCOPIC PROPERTIES. Astrophysical Journal, 2016, 829, 37.	4.5	36
52	The MASSIVE Survey. XII. Connecting Stellar Populations of Early-type Galaxies to Kinematics and Environment. Astrophysical Journal, 2019, 874, 66.	4.5	34
53	Radial Distributions of Dwarf Satellite Systems in the Local Volume. Astrophysical Journal, 2020, 902, 124.	4.5	34
54	A Study of Two Diffuse Dwarf Galaxies in the Field. Astrophysical Journal, 2018, 866, 112.	4.5	33

#	Article	IF	CITATIONS
55	Using Surface Brightness Fluctuations to Study Nearby Satellite Galaxy Systems: Calibration and Methodology. Astrophysical Journal, 2019, 879, 13.	4.5	33
56	The MASSIVE Survey – X. Misalignment between kinematic and photometric axes and intrinsic shapes of massive early-type galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2810-2826.	4.4	32
57	A Catalog of 406 AGNs in MaNGA: A Connection between Radio-mode AGNs and Star Formation Quenching. Astrophysical Journal, 2020, 901, 159.	4.5	30
58	ELVES II: Globular Clusters and Nuclear Star Clusters of Dwarf Galaxies: the Importance of Environment. Astrophysical Journal, 2022, 927, 44.	4.5	29
59	The MASSIVE Survey. VI. The Spatial Distribution and Kinematics of Warm Ionized Gas in the Most Massive Local Early-type Galaxies. Astrophysical Journal, 2017, 837, 40.	4.5	27
60	Using Surface Brightness Fluctuations to Study nearby Satellite Galaxy Systems: The Complete Satellite System of M101. Astrophysical Journal Letters, 2019, 878, L16.	8.3	27
61	The MBHBM _{â<t< sub=""> Project. I. Measurement of the Central Black Hole Mass in Spiral Galaxy NGC 3504 Using Molecular Gas Kinematics. Astrophysical Journal, 2020, 892, 68.</t<>}	4.5	24
62	The MASSIVE Survey. IX. Photometric Analysis of 35 High-mass Early-type Galaxies with HST WFC3/IR*. Astrophysical Journal, 2018, 856, 11.	4.5	23
63	Now You See It, Now You Don't: Star Formation Truncation Precedes the Loss of Molecular Gas by â^¼100 Myr in Massive Poststarburst Galaxies at z â^¼ 0.6. Astrophysical Journal, 2022, 925, 153.	4.5	23
64	SQuIGGL⃗E : Studying Quenching in Intermediate-z Galaxies—Gas, AnguL⃗ar Momentum, and Evolution. Astrophysical Journal, 2022, 926, 89.	4.5	20
65	The MASSIVE Survey. XV. A Stellar Dynamical Mass Measurement of the Supermassive Black Hole in Massive Elliptical Galaxy NGC 1453. Astrophysical Journal, 2020, 891, 4.	4.5	19
66	Star Formation in Isolated Dwarf Galaxies Hosting Tidal Debris: Extending the Dwarf–Dwarf Merger Sequence. Astronomical Journal, 2020, 159, 103.	4.7	19
67	A Second Look at 12 Candidate Dual AGNs Using BAYMAX. Astrophysical Journal, 2020, 892, 29.	4.5	19
68	Tracing the Intrinsic Shapes of Dwarf Galaxies Out to Four Effective Radii: Clues to Low-mass Stellar Halo Formation. Astrophysical Journal, 2020, 900, 163.	4.5	19
69	A Quasar-based Supermassive Black Hole Binary Population Model: Implications for the Gravitational Wave Background. Astrophysical Journal, 2022, 924, 93.	4.5	19
70	The Role of Active Galactic Nuclei in the Quenching of Massive Galaxies in the SQuIGG E Survey. Astrophysical Journal Letters, 2020, 899, L9.	8.3	18
71	The Intrinsic Shapes of Low Surface Brightness Galaxies (LSBGs): A Discriminant of LSBG Galaxy Formation Mechanisms. Astrophysical Journal, 2021, 920, 72.	4.5	18
72	An Active Galactic Nucleus Caught in the Act of Turning Off and On. Astrophysical Journal, 2017, 849, 102.	4.5	17

#	Article	IF	CITATIONS
73	Infrared Surface Brightness Fluctuation Distances for MASSIVE and Type Ia Supernova Host Galaxies*. Astrophysical Journal, Supplement Series, 2021, 255, 21.	7.7	17
74	The nucleation fraction of local volume galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3246-3266.	4.4	17
75	Hyper Suprime-Cam Low Surface Brightness Galaxies. II. A Hubble Space Telescope Study of the Globular Cluster Systems of Ultradiffuse Galaxies in Groups*. Astrophysical Journal, 2020, 902, 45.	4.5	17
76	Deep Realistic Extragalactic Model (DREaM) Galaxy Catalogs: Predictions for a Roman Ultra-deep Field. Astrophysical Journal, 2022, 926, 194.	4.5	16
77	Stellar and Molecular Gas Rotation in a Recently Quenched Massive Galaxy at zÂâ^1⁄4Â0.7. Astrophysical Journal Letters, 2018, 860, L18.	8.3	15
78	The Cosmic Ultraviolet Baryon Survey (CUBS) – IV. The complex multiphase circumgalactic medium as revealed by partial Lyman limit systems. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4359-4384.	4.4	14
79	The MASSIVE Survey XIV—Stellar Velocity Profiles and Kinematic Misalignments from 200 pc to 20 kpc in Massive Early-type Galaxies. Astrophysical Journal, 2020, 891, 65.	4.5	14
80	The Detection of Ionized Carbon Emission at z $\hat{a}^{1}/4$ 8 [*] . Astrophysical Journal Letters, 2021, 917, L36.	8.3	13
81	The MASSIVE Survey XIII. Spatially Resolved Stellar Kinematics in the Central 1 kpc of 20 Massive Elliptical Galaxies with the GMOS-North Integral Field Spectrograph. Astrophysical Journal, 2019, 878, 57.	4.5	12
82	SQuIGG E Survey: Massive zÂâ^¼Â0.6 Post-starburst Galaxies Exhibit Flat Age Gradients. Astrophysical Journal, 2020, 905, 79.	4.5	12
83	The Compact Structures of Massive z $\hat{a}^{1}/4$ 0.7 Post-starburst Galaxies in the SQuIGGL $\hat{a}f$ —E Sample. Astrophysical Journal, 2022, 931, 51.	4.5	12
84	A Search for Wandering Black Holes in the Milky Way with Gaia and DECaLS. Astrophysical Journal, 2021, 917, 17.	4.5	11
85	The black hole population in low-mass galaxies in large-scale cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4912-4931.	4.4	11
86	The MASSIVE Survey. XVI. The Stellar Initial Mass Function in the Center of MASSIVE Early-type Galaxies. Astrophysical Journal, 2022, 932, 103.	4.5	11
87	Shocks and Spatially Offset Active Galactic Nuclei Produce Velocity Offsets in Emission Lines. Astrophysical Journal, 2017, 847, 41.	4.5	9
88	A Chandra and HST View of WISE-selected AGN Candidates in Dwarf Galaxies. Astrophysical Journal, 2021, 914, 133.	4.5	9
89	The MBHBM⋆ Project – II. Molecular gas kinematics in the lenticular galaxy NGCÂ3593 reveal a supermassive black hole. Monthly Notices of the Royal Astronomical Society, 2021, 509, 2920-2939.	4.4	9
90	The In Situ Origins of Dwarf Stellar Outskirts in FIRE-2. Astrophysical Journal, 2022, 931, 152.	4.5	9

#	Article	IF	CITATIONS
91	The MASSIVE Survey. XVII. A Triaxial Orbit-based Determination of the Black Hole Mass and Intrinsic Shape of Elliptical Galaxy NGC 2693. Astrophysical Journal, 2022, 928, 178.	4.5	8
92	The Nature of Low-surface-brightness Galaxies in the Hyper Suprime-Cam Survey. Astrophysical Journal, 2022, 933, 150.	4.5	8
93	Wandering Black Hole Candidates in Dwarf Galaxies at VLBI Resolution. Astrophysical Journal, 2022, 933, 160.	4.5	7
94	Toward a More Complete Optical Census of Active Galactic Nuclei via Spatially Resolved Spectroscopy. Astrophysical Journal, 2022, 927, 23.	4.5	6
95	Measuring the Hubble constant with observations of water-vapor megamasers. Proceedings of the International Astronomical Union, 2012, 8, 255-261.	0.0	5
96	A Measurement of the Hubble Constant by the Megamaser Cosmology Project. Proceedings of the International Astronomical Union, 2017, 13, 86-91.	0.0	4
97	Galaxy Core Formation by Supermassive Black Hole Binaries: The Importance of Realistic Initial Conditions and Galaxy Morphology. Astrophysical Journal, 2021, 922, 40.	4.5	4
98	SDSS-IV MaNGA: Cannibalism Caught in the Act—On the Frequency of Occurrence of Multiple Cores in Brightest Cluster Galaxies. Astrophysical Journal, 2022, 933, 61.	4.5	2
99	X-ray-bright optically faint active galactic nuclei in the Subaru Hyper Suprime-Cam wide survey. Publication of the Astronomical Society of Japan, 2018, 70, .	2.5	1
100	CLIMBER: Galaxy–Halo Connection Constraints from Next-generation Surveys. Astrophysical Journal, 2022, 925, 180.	4.5	1
101	Metallicity Gradients in the Halos of Elliptical Galaxies. Proceedings of the International Astronomical Union, 2015, 11, 182-189.	0.0	0
102	Dual Active Galactic Nuclei. Proceedings of the International Astronomical Union, 2015, 11, 299-305.	0.0	0