
Patrick J Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5082336/publications.pdf Version: 2024-02-01

ΡΑΤΡΙCK | ΗΙΙ

#	Article	IF	CITATIONS
1	Pearls of wisdom for aspiring physician-scientist residency applicants and program directors. JCI Insight, 2022, 7, .	5.0	5
2	Microbiome: Insulin signaling shapes gut community composition. Current Biology, 2021, 31, R803-R806.	3.9	0
3	Starvation Responses Throughout the <i>Caenorhabditis</i> Â <i>elegans</i> Life Cycle. Genetics, 2020, 216, 837-878.	2.9	75
4	Addressing the physician-scientist pipeline: strategies to integrate research into clinical training programs. Journal of Clinical Investigation, 2020, 130, 1058-1061.	8.2	19
5	Modular metabolite assembly in Caenorhabditis elegans depends on carboxylesterases and formation of lysosome-related organelles. ELife, 2020, 9, .	6.0	18
6	Requirement for translocon-associated protein (TRAP) α in insulin biogenesis. Science Advances, 2019, 5, eaax0292.	10.3	21
7	Training the physician-scientist: views from program directors and aspiring young investigators. JCI Insight, 2018, 3, .	5.0	32
8	A histone H4 lysine 20 methyltransferase couples environmental cues to sensory neuron control of developmental plasticity. Development (Cambridge), 2017, 144, 1273-1282.	2.5	22
9	<i>N</i> -Ethyl- <i>N</i> -Nitrosourea (ENU) Mutagenesis Reveals an Intronic Residue Critical for <i>Caenorhabditis elegans</i> 3′ Splice Site Function <i>in Vivo</i> . G3: Genes, Genomes, Genetics, 2016, 6, 1751-1756.	1.8	4
10	Chromoanasynthetic Genomic Rearrangement Identified in a <i>N</i> -Ethyl- <i>N</i> -Nitrosourea (ENU) Mutagenesis Screen in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2016, 6, 351-356.	1.8	15
11	Longevity Genes Revealed by Integrative Analysis of Isoform-Specific <i>daf-16/FoxO</i> Mutants of <i>Caenorhabditis elegans</i> . Genetics, 2015, 201, 613-629.	2.9	63
12	Comparative Metabolomics Reveals Endogenous Ligands of DAF-12, a Nuclear Hormone Receptor, Regulating C.Âelegans Development and Lifespan. Cell Metabolism, 2014, 19, 73-83.	16.2	94
13	Whole genome sequencing and the transformation of C. elegans forward genetics. Methods, 2014, 68, 437-440.	3.8	12
14	Unexpected Role for Dosage Compensation in the Control of Dauer Arrest, Insulin-Like Signaling, and FoxO Transcription Factor Activity in <i>Caenorhabditis elegans</i> . Genetics, 2013, 194, 619-629.	2.9	15
15	TATN-1 Mutations Reveal a Novel Role for Tyrosine as a Metabolic Signal That Influences Developmental Decisions and Longevity in Caenorhabditis elegans. PLoS Genetics, 2013, 9, e1004020.	3.5	41
16	Influence of Steroid Hormone Signaling on Life Span Control by <i>Caenorhabditis elegans</i> Insulin-Like Signaling. G3: Genes, Genomes, Genetics, 2013, 3, 841-850.	1.8	20
17	Effects of <i><scp>C</scp>aenorhabditis elegans sgkâ€l</i> mutations on lifespan, stress resistance, and <scp>DAF</scp> â€l6/ <scp>F</scp> ox <scp>O</scp> regulation. Aging Cell, 2013, 12, 932-940.	6.7	57
18	Insulin/insulin-like growth factor signaling in C. elegans. WormBook, 2013, , 1-43.	5.3	401

PATRICK J HU

#	Article	IF	CITATIONS
19	Ovarian steroid cell tumor with biallelic adenomatous polyposis coli inactivation in a patient with familial adenomatous polyposis. Genes Chromosomes and Cancer, 2012, 51, 283-289.	2.8	13
20	EAK-7 Controls Development and Life Span by Regulating Nuclear DAF-16/FoxO Activity. Cell Metabolism, 2010, 12, 30-41.	16.2	47
21	Functional divergence of dafachronic acid pathways in the control of C. elegans development and lifespan. Developmental Biology, 2010, 340, 605-612.	2.0	33
22	EAK proteins: novel conserved regulators of C. elegans lifespan. Aging, 2010, 2, 742-747.	3.1	11
23	DANSing with <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7685-7686.	7.1	1
24	Caenorhabditis elegans EAK-3 inhibits dauer arrest via nonautonomous regulation of nuclear DAF-16/FoxO activity. Developmental Biology, 2008, 315, 290-302.	2.0	18
25	Dauer. WormBook, 2007, , 1-19.	5.3	347
26	Two Membrane-Associated Tyrosine Phosphatase Homologs Potentiate C. elegans AKT-1/PKB Signaling. PLoS Genetics, 2006, 2, e99.	3.5	42
27	Systematic Interactome Mapping and Genetic Perturbation Analysis of a C. elegans TGF-Î ² Signaling Network. Molecular Cell, 2004, 13, 469-482.	9.7	136
28	Phosphatidylinositol 3-Kinase Mediates Epidermal Growth Factor-Induced Activation of the c-Jun N-Terminal Kinase Signaling Pathway. Molecular and Cellular Biology, 1997, 17, 5784-5790.	2.3	127
29	Vav: A potential link between tyrosine kinases andRas-like GTPases in hematopoietic cell signaling. BioEssays, 1993, 15, 179-183.	2.5	22
30	Phosphatidylinositol 3-kinase p85 SH2 domain specificity defined by direct phosphopeptide/SH2 domain binding. Biochemistry, 1993, 32, 3197-3202.	2.5	165
31	Cloning of a novel, ubiquitously expressed human phosphatidylinositol 3-kinase and identification of its binding site on p85 Molecular and Cellular Biology, 1993, 13, 7677-7688.	2.3	253
32	SH2 domains exhibit high-affinity binding to tyrosine-phosphorylated peptides yet also exhibit rapid dissociation and exchange Molecular and Cellular Biology, 1993, 13, 1449-1455.	2.3	185
33	The SH2 and SH3 domain-containing Nck protein is oncogenic and a common target for phosphorylation by different surface receptors Molecular and Cellular Biology, 1992, 12, 5824-5833.	2.3	198
34	Interaction of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors Molecular and Cellular Biology, 1992, 12, 981-990.	2.3	353
35	IRS-1 activates phosphatidylinositol 3'-kinase by associating with src homology 2 domains of p85 Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 10350-10354.	7.1	439
36	Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation EMBO Journal, 1992, 11, 3469-3479.	7.8	923

#	Article	IF	CITATIONS
37	Tyrosine phosphorylation of vav proto-oncogene product containing SH2 domain and transcription factor motifs. Nature, 1992, 356, 71-74.	27.8	379