Omar M Yaghi

List of Publications by Citations

Source: https://exaly.com/author-pdf/5082115/omar-m-yaghi-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

346 papers

162,561 citations

160 h-index

379 g-index

379 ext. papers

178,595 ext. citations

16.4 avg, IF

9.05 L-index

#	Paper	IF	Citations
346	The chemistry and applications of metal-organic frameworks. <i>Science</i> , 2013 , 341, 1230444	33.3	9059
345	Reticular synthesis and the design of new materials. <i>Nature</i> , 2003 , 423, 705-14	50.4	7597
344	Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. <i>Science</i> , 2002 , 295, 469-72	33.3	6475
343	Design and synthesis of an exceptionally stable and highly porous metal-organic framework. <i>Nature</i> , 1999 , 402, 276-279	50.4	5851
342	Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 10186-10191	11.5	47 ¹ 5
341	Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. <i>Accounts of Chemical Research</i> , 2001 , 34, 319-30	24.3	4600
340	Porous, crystalline, covalent organic frameworks. <i>Science</i> , 2005 , 310, 1166-70	33.3	4039
339	Hydrogen storage in microporous metal-organic frameworks. <i>Science</i> , 2003 , 300, 1127-9	33.3	4026
338	High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. <i>Science</i> , 2008 , 319, 939-43	33.3	3044
337	Ultrahigh porosity in metal-organic frameworks. <i>Science</i> , 2010 , 329, 424-8	33.3	2869
336	A route to high surface area, porosity and inclusion of large molecules in crystals. <i>Nature</i> , 2004 , 427, 523-7	50.4	2337
335	Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. <i>Journal of the American Chemical Society</i> , 2005 , 127, 17998-9	16.4	2281
334	MetalBrganic frameworks: a new class of porous materials. <i>Microporous and Mesoporous Materials</i> , 2004 , 73, 3-14	5.3	2204
333	Strategies for hydrogen storage in metalorganic frameworks. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 4670-9	16.4	2144
332	Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. <i>Chemical Society Reviews</i> , 2009 , 38, 1257-83	58.5	2025
331	Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. <i>Accounts of Chemical Research</i> , 2005 , 38, 176-82	24.3	1975
330	Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. <i>Accounts of Chemical Research</i> , 2010 , 43, 58-67	24.3	1967

(2001-2005)

329	Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. <i>Journal of the American Chemical Society</i> , 2005 , 127, 1504-18	16.4	1963
328	Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids. <i>Accounts of Chemical Research</i> , 1998 , 31, 474-484	24.3	1917
327	Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. <i>Journal of the American Chemical Society</i> , 2009 , 131, 8875-83	16.4	1843
326	Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. <i>Chemical Reviews</i> , 2012 , 112, 675-702	68.1	1794
325	Selective binding and removal of guests in a microporous metal®rganic framework. <i>Nature</i> , 1995 , 378, 703-706	50.4	1695
324	The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. <i>Accounts of Chemical Research</i> , 2008 , 41, 1782-9	24.3	1680
323	Designed synthesis of 3D covalent organic frameworks. <i>Science</i> , 2007 , 316, 268-72	33.3	1675
322	Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. <i>Journal of the American Chemical Society</i> , 2006 , 128, 1304-15	16.4	1555
321	Covalent organic frameworks comprising cobalt porphyrins for catalytic COI reduction in water. <i>Science</i> , 2015 , 349, 1208-13	33.3	1540
320	Water adsorption in porous metal-organic frameworks and related materials. <i>Journal of the American Chemical Society</i> , 2014 , 136, 4369-81	16.4	1433
319	Large-pore apertures in a series of metal-organic frameworks. <i>Science</i> , 2012 , 336, 1018-23	33.3	1425
318	Multiple functional groups of varying ratios in metal-organic frameworks. <i>Science</i> , 2010 , 327, 846-50	33.3	1399
317	Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). <i>Journal of the American Chemical Society</i> , 2007 , 129, 14176-	·7 ^{16.4}	1355
316	Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. <i>Nature</i> , 2008 , 453, 207-11	50.4	1302
315	The atom, the molecule, and the covalent organic framework. <i>Science</i> , 2017 , 355,	33.3	1278
314	Hydrogen sorption in functionalized metal-organic frameworks. <i>Journal of the American Chemical Society</i> , 2004 , 126, 5666-7	16.4	1172
313	Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. <i>Journal of the American Chemical Society</i> , 2009 , 131, 3875-	7 ^{16.4}	1146
312	Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. <i>Science</i> , 2001 , 291, 1021-3	33.3	1089

311	Exceptional H2 saturation uptake in microporous metal-organic frameworks. <i>Journal of the American Chemical Society</i> , 2006 , 128, 3494-5	16.4	1079
310	A microporous metal-organic framework for gas-chromatographic separation of alkanes. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 1390-3	16.4	1060
309	A crystalline imine-linked 3-D porous covalent organic framework. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4570-1	16.4	1005
308	Chemistry of Covalent Organic Frameworks. Accounts of Chemical Research, 2015, 48, 3053-63	24.3	964
307	High H2 adsorption in a microporous metal-organic framework with open metal sites. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 4745-9	16.4	959
306	Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 20637-40	11.5	950
305	Carbon capture and conversion using metal-organic frameworks and MOF-based materials. <i>Chemical Society Reviews</i> , 2019 , 48, 2783-2828	58.5	910
304	Highly Porous and Stable Metal Drganic Frameworks: Structure Design and Sorption Properties. Journal of the American Chemical Society, 2000 , 122, 1391-1397	16.4	901
303	Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. <i>Chemical Reviews</i> , 2014 , 114, 1343-70	68.1	894
302	Establishing Microporosity in Open Metal©rganic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate). <i>Journal of the American Chemical Society</i> , 1998 , 120, 8571-8	5 ¹⁶ 24	893
301	Frameworks for Extended Solids: Geometrical Design Principles. <i>Journal of Solid State Chemistry</i> , 2000 , 152, 3-20	3.3	840
300	Zeolite A imidazolate frameworks. <i>Nature Materials</i> , 2007 , 6, 501-6	27	809
299	Water harvesting from air with metal-organic frameworks powered by natural sunlight. <i>Science</i> , 2017 , 356, 430-434	33.3	800
298	Gas adsorption sites in a large-pore metal-organic framework. <i>Science</i> , 2005 , 309, 1350-4	33.3	7 ⁸ 5
297	The chemistry of metalorganic frameworks for CO2 capture, regeneration and conversion. <i>Nature Reviews Materials</i> , 2017 , 2,	73.3	776
296	Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. <i>Journal of the American Chemical Society</i> , 2015 , 137, 14129-35	16.4	768
295	From Condensed Lanthanide Coordination Solids to Microporous Frameworks Having Accessible Metal Sites. <i>Journal of the American Chemical Society</i> , 1999 , 121, 1651-1657	16.4	765
294	Reticular chemistry of metal-organic polyhedra. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 5136-47	16.4	760

(2011-2001)

293	Assembly of metal-organic frameworks from large organic and inorganic secondary building units: new examples and simplifying principles for complex structures. <i>Journal of the American Chemical Society</i> , 2001 , 123, 8239-47	16.4	734
292	Metal-organic frameworks with high capacity and selectivity for harmful gases. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 11623-7	11.5	7 1 4
291	Exceptional ammonia uptake by a covalent organic framework. <i>Nature Chemistry</i> , 2010 , 2, 235-8	17.6	675
290	Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. <i>Tetrahedron</i> , 2008 , 64, 8553-8557	2.4	674
289	Construction of Porous Solids from Hydrogen-Bonded Metal Complexes of 1,3,5-Benzenetricarboxylic Acid. <i>Journal of the American Chemical Society</i> , 1996 , 118, 9096-9101	16.4	654
288	Covalent organic frameworks as exceptional hydrogen storage materials. <i>Journal of the American Chemical Society</i> , 2008 , 130, 11580-1	16.4	643
287	Selective Guest Binding by Tailored Channels in a 3-D Porous Zinc(II) B enzenetricarboxylate Network. <i>Journal of the American Chemical Society</i> , 1997 , 119, 2861-2868	16.4	635
286	Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks. <i>Inorganic Chemistry</i> , 2012 , 51, 6443-5	5.1	629
285	Tailored Porous Materials. <i>Chemistry of Materials</i> , 1999 , 11, 2633-2656	9.6	623
284	Design of new materials for methane storage. <i>Langmuir</i> , 2004 , 20, 2683-9	4	621
283	Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. <i>Journal of the American Chemical Society</i> , 2007 , 129, 12914-5	16.4	601
283	American Chemical Society, 2007 , 129, 12914-5 Structures of Metal-Organic Frameworks with Pod Secondary Building Units. Chemical Peviews		
	American Chemical Society, 2007, 129, 12914-5 Structures of Metal-Organic Frameworks with Rod Secondary Building Units. Chemical Reviews, 2016, 116, 12466-12535 Crystalline covalent organic frameworks with hydrozone linkages. Journal of the American Chemical	16.4 68.1	
282	American Chemical Society, 2007, 129, 12914-5 Structures of Metal-Organic Frameworks with Rod Secondary Building Units. Chemical Reviews, 2016, 116, 12466-12535 Crystalline covalent organic frameworks with hydrazone linkages. Journal of the American Chemical Society, 2011, 133, 11478-81	16.4 68.1	570 561
282	American Chemical Society, 2007, 129, 12914-5 Structures of Metal-Organic Frameworks with Rod Secondary Building Units. Chemical Reviews, 2016, 116, 12466-12535 Crystalline covalent organic frameworks with hydrazone linkages. Journal of the American Chemical Society, 2011, 133, 11478-81 Porous metal-organic polyhedra: 25 A cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. Journal of the American Chemical Society, 2001, 123, 4368-9 Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks.	16.4 68.1 16.4	570 561 561
282 281 280	American Chemical Society, 2007, 129, 12914-5 Structures of Metal-Organic Frameworks with Rod Secondary Building Units. Chemical Reviews, 2016, 116, 12466-12535 Crystalline covalent organic frameworks with hydrazone linkages. Journal of the American Chemical Society, 2011, 133, 11478-81 Porous metal-organic polyhedra: 25 A cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. Journal of the American Chemical Society, 2001, 123, 4368-9 Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks. Journal of the American Chemical Society, 2008, 130, 12626-7	16.4 68.1 16.4	570 561 561
282 281 280 279	Structures of Metal-Organic Frameworks with Rod Secondary Building Units. Chemical Reviews, 2016, 116, 12466-12535 Crystalline covalent organic frameworks with hydrazone linkages. Journal of the American Chemical Society, 2011, 133, 11478-81 Porous metal-organic polyhedra: 25 A cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. Journal of the American Chemical Society, 2001, 123, 4368-9 Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks. Journal of the American Chemical Society, 2008, 130, 12626-7 Supercapacitors of nanocrystalline metal-organic frameworks. ACS Nano, 2014, 8, 7451-7 Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous	16.4 68.1 16.4 16.4	570561561558

275	Single-crystal x-ray diffraction structures of covalent organic frameworks. <i>Science</i> , 2018 , 361, 48-52	33.3	521
274	Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal@rganic frameworks. <i>Journal of Materials Chemistry</i> , 2007 , 17, 3197		485
273	Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra. <i>Journal of the American Chemical Society</i> , 2008 , 130, 11650-61	16.4	467
272	Metal insertion in a microporous metal-organic framework lined with 2,2'-bipyridine. <i>Journal of the American Chemical Society</i> , 2010 , 132, 14382-4	16.4	463
271	Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks. <i>Journal of the American Chemical Society</i> , 2008 , 130, 406-7	16.4	458
270	MOF-74 building unit has a direct impact on toxic gas adsorption. <i>Chemical Engineering Science</i> , 2011 , 66, 163-170	4.4	438
269	A multiunit catalyst with synergistic stability and reactivity: a polyoxometalate-metal organic framework for aerobic decontamination. <i>Journal of the American Chemical Society</i> , 2011 , 133, 16839-46	16.4	437
268	Metal-organic frameworks from edible natural products. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 8630-4	16.4	426
267	New Porous Crystals of Extended Metal-Catecholates. <i>Chemistry of Materials</i> , 2012 , 24, 3511-3513	9.6	423
266	A Microporous Lanthanide-Organic Framework. <i>Angewandte Chemie - International Edition</i> , 1999 , 38, 2590-2594	16.4	410
265	The role of reticular chemistry in the design of CO reduction catalysts. <i>Nature Materials</i> , 2018 , 17, 301-3	Q 7	405
264	Plasmon-Enhanced Photocatalytic CO(2) Conversion within Metal-Organic Frameworks under Visible Light. <i>Journal of the American Chemical Society</i> , 2017 , 139, 356-362	16.4	401
263	Cu2(ATC)IbH2O: Design of Open Metal Sites in Porous Metal Drganic Crystals (ATC: 1,3,5,7-Adamantane Tetracarboxylate). <i>Journal of the American Chemical Society</i> , 2000 , 122, 11559-1156	5 6 6.4	391
262	Brllsted acidity in metal-organic frameworks. <i>Chemical Reviews</i> , 2015 , 115, 6966-97	68.1	390
261	"Heterogeneity within order" in metal-organic frameworks. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 3417-30	16.4	390
260	Three-periodic nets and tilings: regular and quasiregular nets. <i>Acta Crystallographica Section A:</i> Foundations and Advances, 2003 , 59, 22-7		385
259	Supertetrahedral sulfide crystals with giant cavities and channels. <i>Science</i> , 1999 , 283, 1145-7	33.3	370
258	Large Free Volume in Maximally Interpenetrating Networks: The Role of Secondary Building Units Exemplified by Tb2(ADB)3[(CH3)2SO]4[16[(CH3)2SO]1. <i>Journal of the American Chemical Society</i> , 2000 , 122, 4843-4844	16.4	363

(2016-2013)

257	A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption. <i>Chemical Communications</i> , 2013 , 49, 9500-2	5.8	356
256	Superacidity in sulfated metal-organic framework-808. <i>Journal of the American Chemical Society</i> , 2014 , 136, 12844-7	16.4	350
255	High methane storage capacity in aluminum metal-organic frameworks. <i>Journal of the American Chemical Society</i> , 2014 , 136, 5271-4	16.4	349
254	Mapping of functional groups in metal-organic frameworks. <i>Science</i> , 2013 , 341, 882-5	33.3	349
253	Cu(2)[o-Br-C(6)H(3)(CO(2))(2)](2)(H(2)O)(2).(DMF)(8)(H(2)O)(2): a framework deliberately designed to have the NbO structure type. <i>Journal of the American Chemical Society</i> , 2002 , 124, 376-7	16.4	345
252	Secondary building units as the turning point in the development of the reticular chemistry of MOFs. <i>Science Advances</i> , 2018 , 4, eaat9180	14.3	342
251	Coordinatively Unsaturated Metal Centers in the Extended Porous Framework of Zn3(BDC)3[6CH3OH (BDC = 1,4-Benzenedicarboxylate). <i>Journal of the American Chemical Society</i> , 1998 , 120, 2186-2187	16.4	335
250	Geometric requirements and examples of important structures in the assembly of square building blocks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2002 , 99, 4900-4	1 ^{11.5}	327
249	Metal-organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8863-6	16.4	317
248	Docking in metal-organic frameworks. <i>Science</i> , 2009 , 325, 855-9	33.3	314
248	Docking in metal-organic frameworks. <i>Science</i> , 2009 , 325, 855-9 Weaving of organic threads into a crystalline covalent organic framework. <i>Science</i> , 2016 , 351, 365-9	33.3	314
			307
247	Weaving of organic threads into a crystalline covalent organic framework. <i>Science</i> , 2016 , 351, 365-9 Reticular synthesis of covalent organic borosilicate frameworks. <i>Journal of the American Chemical</i>	33:3	307
247	Weaving of organic threads into a crystalline covalent organic framework. <i>Science</i> , 2016 , 351, 365-9 Reticular synthesis of covalent organic borosilicate frameworks. <i>Journal of the American Chemical Society</i> , 2008 , 130, 11872-3 Synthesis and characterization of metal-organic framework-74 containing 2, 4, 6, 8, and 10 different	33·3 16.4 5.1	307
247246245	Weaving of organic threads into a crystalline covalent organic framework. <i>Science</i> , 2016 , 351, 365-9 Reticular synthesis of covalent organic borosilicate frameworks. <i>Journal of the American Chemical Society</i> , 2008 , 130, 11872-3 Synthesis and characterization of metal-organic framework-74 containing 2, 4, 6, 8, and 10 different metals. <i>Inorganic Chemistry</i> , 2014 , 53, 5881-3	33·3 16.4 5.1	307 304 303
247246245244	Weaving of organic threads into a crystalline covalent organic framework. <i>Science</i> , 2016 , 351, 365-9 Reticular synthesis of covalent organic borosilicate frameworks. <i>Journal of the American Chemical Society</i> , 2008 , 130, 11872-3 Synthesis and characterization of metal-organic framework-74 containing 2, 4, 6, 8, and 10 different metals. <i>Inorganic Chemistry</i> , 2014 , 53, 5881-3 Reticular Electronic Tuning of Porphyrin Active Sites in Covalent Organic Frameworks for Electrocatalytic Carbon Dioxide Reduction. <i>Journal of the American Chemical Society</i> , 2018 , 140, 1116-11	33·3 16.4 5.1 122·4	307 304 303 300
247246245244243	Weaving of organic threads into a crystalline covalent organic framework. <i>Science</i> , 2016 , 351, 365-9 Reticular synthesis of covalent organic borosilicate frameworks. <i>Journal of the American Chemical Society</i> , 2008 , 130, 11872-3 Synthesis and characterization of metal-organic framework-74 containing 2, 4, 6, 8, and 10 different metals. <i>Inorganic Chemistry</i> , 2014 , 53, 5881-3 Reticular Electronic Tuning of Porphyrin Active Sites in Covalent Organic Frameworks for Electrocatalytic Carbon Dioxide Reduction. <i>Journal of the American Chemical Society</i> , 2018 , 140, 1116-11 Strong and reversible binding of carbon dioxide in a green metal-organic framework. <i>Journal of the American Chemical Society</i> , 2011 , 133, 15312-5	33.3 16.4 5.1 122.4 16.4	307 304 303 300 297

239	Introduction of functionality, selection of topology, and enhancement of gas adsorption in multivariate metal-organic framework-177. <i>Journal of the American Chemical Society</i> , 2015 , 137, 2641-5	0 ^{16.4}	285
238	The role of metalBrganic frameworks in a carbon-neutral energy cycle. <i>Nature Energy</i> , 2016 , 1,	62.3	284
237	Single-crystal structure of a covalent organic framework. <i>Journal of the American Chemical Society</i> , 2013 , 135, 16336-9	16.4	277
236	The Chemistry of CO Capture in an Amine-Functionalized Metal-Organic Framework under Dry and Humid Conditions. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12125-12128	16.4	269
235	Definitive molecular level characterization of defects in UiO-66 crystals. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 11162-7	16.4	267
234	Characterization of H2 binding sites in prototypical metal-organic frameworks by inelastic neutron scattering. <i>Journal of the American Chemical Society</i> , 2005 , 127, 14904-10	16.4	267
233	Isoreticular expansion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals. <i>Inorganic Chemistry</i> , 2011 , 50, 9147-52	5.1	263
232	A combined experimental-computational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks. <i>Journal of the American Chemical Society</i> , 2010 , 132, 11006	5- 8 6.4	263
231	Infinite secondary building units and forbidden catenation in metal-organic frameworks. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 284-7	16.4	263
230	Covalent Chemistry beyond Molecules. <i>Journal of the American Chemical Society</i> , 2016 , 138, 3255-65	16.4	256
229	Strategien fil die Wasserstoffspeicherung in metall-organischen Kompositger\(\bar{\text{lten}}\). Angewandte Chemie, 2005 , 117, 4748-4758	3.6	253
228	Isoreticular metalation of metal-organic frameworks. <i>Journal of the American Chemical Society</i> , 2009 , 131, 9492-3	16.4	248
227	Metal-organic frameworks based on trigonal prismatic building blocks and the new "acs" topology. <i>Inorganic Chemistry</i> , 2005 , 44, 2998-3000	5.1	243
226	Chemical Environment Control and Enhanced Catalytic Performance of Platinum Nanoparticles Embedded in Nanocrystalline Metal-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7810-6	16.4	241
225	2019,		239
224	Advances in the chemistry of metal®rganic frameworks. <i>CrystEngComm</i> , 2002 , 4, 401-404	3.3	239
223	Chemical Conversion of Linkages in Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2016 , 138, 15519-15522	16.4	236
222	Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework. <i>Chemical Science</i> , 2014 , 5, 4693-4700	9.4	235

(2005-2018)

221	Adsorption-based atmospheric water harvesting device for arid climates. <i>Nature Communications</i> , 2018 , 9, 1191	17.4	227
220	Taxonomy of periodic nets and the design of materials. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 10)3 5:4 3	227
219	What do we know about three-periodic nets?. Journal of Solid State Chemistry, 2005, 178, 2533-2554	3.3	220
218	Highly Active and Stable Single-Atom Cu Catalysts Supported by a Metal-Organic Framework. Journal of the American Chemical Society, 2019 , 141, 5201-5210	16.4	219
217	Three-Dimensional Metal-Catecholate Frameworks and Their Ultrahigh Proton Conductivity. Journal of the American Chemical Society, 2015 , 137, 15394-7	16.4	216
216	Metal nanocrystals embedded in single nanocrystals of MOFs give unusual selectivity as heterogeneous catalysts. <i>Nano Letters</i> , 2014 , 14, 5979-83	11.5	215
215	Practical water production from desert air. <i>Science Advances</i> , 2018 , 4, eaat3198	14.3	214
214	Coordinative alignment of molecules in chiral metal-organic frameworks. <i>Science</i> , 2016 , 353, 808-11	33.3	211
213	Photophysical pore control in an azobenzene-containing metal B rganic framework. <i>Chemical Science</i> , 2013 , 4, 2858	9.4	208
212	Robust dynamics. <i>Nature Chemistry</i> , 2010 , 2, 439-43	17.6	208
212	Robust dynamics. <i>Nature Chemistry</i> , 2010 , 2, 439-43 High H2 Adsorption in a Microporous Metall Drganic Framework with Open Metal Sites. <i>Angewandte Chemie</i> , 2005 , 117, 4823-4827	17.6 3.6	208
	High H2 Adsorption in a Microporous Metal®rganic Framework with Open Metal Sites.		208
211	High H2 Adsorption in a Microporous Metal@rganic Framework with Open Metal Sites. Angewandte Chemie, 2005, 117, 4823-4827 Amphidynamic character of crystalline MOF-5: rotational dynamics of terephthalate phenylenes in a free-volume, sterically unhindered environment. Journal of the American Chemical Society, 2008,	3.6	208
211	High H2 Adsorption in a Microporous Metal@rganic Framework with Open Metal Sites. Angewandte Chemie, 2005, 117, 4823-4827 Amphidynamic character of crystalline MOF-5: rotational dynamics of terephthalate phenylenes in a free-volume, sterically unhindered environment. Journal of the American Chemical Society, 2008, 130, 3246-7 A Microporous Metal@rganic Framework for Gas-Chromatographic Separation of Alkanes.	3.6	208
211 210 209	High H2 Adsorption in a Microporous Metal@rganic Framework with Open Metal Sites. Angewandte Chemie, 2005, 117, 4823-4827 Amphidynamic character of crystalline MOF-5: rotational dynamics of terephthalate phenylenes in a free-volume, sterically unhindered environment. Journal of the American Chemical Society, 2008, 130, 3246-7 A Microporous Metal@rganic Framework for Gas-Chromatographic Separation of Alkanes. Angewandte Chemie, 2006, 118, 1418-1421 High Methane Storage Working Capacity in Metal-Organic Frameworks with Acrylate Links. Journal	3.6 16.4 3.6	208 205 202
211 210 209 208	High H2 Adsorption in a Microporous Metal®rganic Framework with Open Metal Sites. Angewandte Chemie, 2005, 117, 4823-4827 Amphidynamic character of crystalline MOF-5: rotational dynamics of terephthalate phenylenes in a free-volume, sterically unhindered environment. Journal of the American Chemical Society, 2008, 130, 3246-7 A Microporous Metal®rganic Framework for Gas-Chromatographic Separation of Alkanes. Angewandte Chemie, 2006, 118, 1418-1421 High Methane Storage Working Capacity in Metal-Organic Frameworks with Acrylate Links. Journal of the American Chemical Society, 2016, 138, 10244-51 Heterogeneity within order in crystals of a porous metal-organic framework. Journal of the	3.6 16.4 3.6	208 205 202 201
211 210 209 208 207	High H2 Adsorption in a Microporous Metal Drganic Framework with Open Metal Sites. Angewandte Chemie, 2005, 117, 4823-4827 Amphidynamic character of crystalline MOF-5: rotational dynamics of terephthalate phenylenes in a free-volume, sterically unhindered environment. Journal of the American Chemical Society, 2008, 130, 3246-7 A Microporous Metal Drganic Framework for Gas-Chromatographic Separation of Alkanes. Angewandte Chemie, 2006, 118, 1418-1421 High Methane Storage Working Capacity in Metal-Organic Frameworks with Acrylate Links. Journal of the American Chemical Society, 2016, 138, 10244-51 Heterogeneity within order in crystals of a porous metal-organic framework. Journal of the American Chemical Society, 2011, 133, 11920-3 Three-periodic nets and tilings: semiregular nets. Acta Crystallographica Section A: Foundations and	3.6 16.4 3.6	208 205 202 201 199

203	A Titanium-Organic Framework as an Exemplar of Combining the Chemistry of Metal- and Covalent-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2016 , 138, 4330-3	16.4	196
202	Selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 10645-8	16.4	196
201	Asymmetric catalytic reactions by NbO-type chiral metal®rganic frameworks. <i>Chemical Science</i> , 2011 , 2, 877	9.4	191
200	Three-periodic nets and tilings: edge-transitive binodal structures. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2006 , 62, 350-5		190
199	Design of frameworks with mixed triangular and octahedral building blocks exemplified by the structure of [Zn4O(TCA)2] having the pyrite topology. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 3907-9	16.4	187
198	Porous Crystalline Olefin-Linked Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2019 , 141, 6848-6852	16.4	185
197	A metal-organic framework with covalently bound organometallic complexes. <i>Journal of the American Chemical Society</i> , 2010 , 132, 9262-4	16.4	185
196	A metal-organic framework with a hierarchical system of pores and tetrahedral building blocks. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 2528-33	16.4	185
195	Extra adsorption and adsorbate superlattice formation in metal-organic frameworks. <i>Nature</i> , 2015 , 527, 503-7	50.4	176
194	Bioinspired Metal-Organic Framework Catalysts for Selective Methane Oxidation to Methanol. Journal of the American Chemical Society, 2018 , 140, 18208-18216	16.4	176
193	Porous, conductive metal-triazolates and their structural elucidation by the charge-flipping method. <i>Chemistry - A European Journal</i> , 2012 , 18, 10595-601	4.8	172
192	Crystalline Dioxin-Linked Covalent Organic Frameworks from Irreversible Reactions. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12715-12719	16.4	171
191	Postsynthetic modification of a metal-organic framework for stabilization of a hemiaminal and ammonia uptake. <i>Inorganic Chemistry</i> , 2011 , 50, 6853-5	5.1	165
190	20 A Cd4In16S35(14-) supertetrahedral T4 clusters as building units in decorated cristobalite frameworks. <i>Journal of the American Chemical Society</i> , 2001 , 123, 4867-8	16.4	158
189	Adsorption mechanism and uptake of methane in covalent organic frameworks: theory and experiment. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 10824-33	2.8	156
188	MOF water harvesters. <i>Nature Nanotechnology</i> , 2020 , 15, 348-355	28.7	155
187	Hydrogen Storage in New Metal®rganic Frameworks. Journal of Physical Chemistry C, 2012, 116, 13143-	13851	154
186	Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement. <i>International Journal of Heat and Mass Transfer</i> , 2007 , 50, 405-411	4.9	154

(2019-2005)

185	Transformation of a metal-organic framework from the NbO to PtS net. <i>Inorganic Chemistry</i> , 2005 , 44, 181-3	5.1	153
184	Rapid Cycling and Exceptional Yield in a Metal-Organic Framework Water Harvester. <i>ACS Central Science</i> , 2019 , 5, 1699-1706	16.8	150
183	Crystal structure, dissolution, and deposition of a 5 nm functionalized metal-organic great rhombicuboctahedron. <i>Journal of the American Chemical Society</i> , 2006 , 128, 8398-9	16.4	150
182	Principles of Designing Extra-Large Pore Openings and Cages in Zeolitic Imidazolate Frameworks. <i>Journal of the American Chemical Society</i> , 2017 , 139, 6448-6455	16.4	146
181	Seven Post-synthetic Covalent Reactions in Tandem Leading to Enzyme-like Complexity within Metal-Organic Framework Crystals. <i>Journal of the American Chemical Society</i> , 2016 , 138, 8352-5	16.4	146
180	A flexible germanate structure containing 24-ring channels and with very low framework density. Journal of the American Chemical Society, 2001 , 123, 12706-7	16.4	144
179	Conversion of Imine to Oxazole and Thiazole Linkages in Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2018 , 140, 9099-9103	16.4	143
178	1,4-Benzenedicarboxylate derivatives as links in the design of paddle-wheel units and metalorganic frameworks. <i>Chemical Communications</i> , 2001 , 2532-2533	5.8	138
177	New Directions in Polyvanadate Chemistry: From Cages and Clusters to Baskets, Belts, Bowls, and Barrels. <i>Angewandte Chemie International Edition in English</i> , 1992 , 31, 49-51		136
176	Synthesis and structure of chemically stable metal-organic polyhedra. <i>Journal of the American Chemical Society</i> , 2009 , 131, 12532-3	16.4	135
175	Identification of the strong Br\(\text{B}\)sted acid site in a metal-organic framework solid acid catalyst. <i>Nature Chemistry</i> , 2019 , 11, 170-176	17.6	134
174	Covalent Organic Frameworks: Organic Chemistry Extended into Two and Three Dimensions. <i>Trends in Chemistry</i> , 2019 , 1, 172-184	14.8	132
173	A Synthetic Route for Crystals of Woven Structures, Uniform Nanocrystals, and Thin Films of Imine Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2017 , 139, 13166-13172	16.4	131
172	Polymer-induced heteronucleation for the discovery of new extended solids. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 2553-6	16.4	131
171	Metal-organic frameworks of vanadium as catalysts for conversion of methane to acetic acid. <i>Inorganic Chemistry</i> , 2011 , 50, 7388-90	5.1	129
170	Transformation of Germanium Dioxide to Microporous Germanate 4-Connected Nets. <i>Journal of the American Chemical Society</i> , 1998 , 120, 10569-10570	16.4	129
169	Determination of the hydrogen absorption sites in Zn4O(1,4-benzenedicarboxylate) by single crystal neutron diffraction. <i>Chemical Communications</i> , 2006 , 278-80	5.8	128
168	A Metal-Organic Framework of Organic Vertices and Polyoxometalate Linkers as a Solid-State Electrolyte. <i>Journal of the American Chemical Society</i> , 2019 , 141, 17522-17526	16.4	124

167	Site-Specific CO2 Adsorption and Zero Thermal Expansion in an Anisotropic Pore Network. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 24915-24919	3.8	124
166	Mesoscopic constructs of ordered and oriented metal-organic frameworks on plasmonic silver nanocrystals. <i>Journal of the American Chemical Society</i> , 2015 , 137, 2199-202	16.4	120
165	Reversible interpenetration in a metal-organic framework triggered by ligand removal and addition. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 8791-5	16.4	113
164	Pore Chemistry of Metal®rganic Frameworks. Advanced Functional Materials, 2020, 30, 2000238	15.6	110
163	Tertiary building units: synthesis, structure, and porosity of a metal-organic dendrimer framework (MODF-1). <i>Journal of the American Chemical Society</i> , 2001 , 123, 11482-3	16.4	109
162	MetalBrganic frameworks constructed from pentagonal antiprismatic and cuboctahedral secondary building units. <i>Chemical Communications</i> , 2001 , 2534-2535	5.8	105
161	Multivariate metal-organic frameworks. <i>National Science Review</i> , 2017 , 4, 296-298	10.8	104
160	Design of Solids from Molecular Building Blocks: Golden Opportunities for Solid State Chemistry. Journal of Solid State Chemistry, 2000 , 152, 1-2	3.3	100
159	Cytoprotective metal-organic frameworks for anaerobic bacteria. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 10582-10587	11.5	100
158	Three-Dimensional Phthalocyanine Metal-Catecholates for High Electrochemical Carbon Dioxide Reduction. <i>Journal of the American Chemical Society</i> , 2019 , 141, 17081-17085	16.4	99
157	Ring-opening reactions within porous metal-organic frameworks. <i>Inorganic Chemistry</i> , 2010 , 49, 6387-9	5.1	99
156	Porous Germanates: [Synthesis, Structure, and Inclusion Properties of Ge7O14.5F2[[(CH3)2NH2]3(H2O)0.86. <i>Journal of the American Chemical Society</i> , 1998 , 120, 8567-8568	16.4	99
155	NMR and X-ray Study Revealing the Rigidity of Zeolitic Imidazolate Frameworks. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 13307-13312	3.8	97
154	A catenated strut in a catenated metal-organic framework. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 6751-5	16.4	96
153	The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: a library for reticular chemistry. <i>Chemical Society Reviews</i> , 2018 , 47, 4642-4664	58.5	94
152	The CdSO4, rutile, cooperite and quartz dual nets: interpenetration and catenation. <i>Solid State Sciences</i> , 2003 , 5, 73-78	3.4	93
151	Noninterpenetrating Indium Sulfide Supertetrahedral Cristobalite Framework. <i>Journal of the American Chemical Society</i> , 1999 , 121, 6096-6097	16.4	93
150	Metal-organic frameworks incorporating copper-complexed rotaxanes. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 2160-3	16.4	92

149	[Cd16In64S134]44-: 31-A tetrahedron with a large cavity. <i>Angewandte Chemie - International Edition</i> , 2003 , 42, 1819-21	16.4	92
148	Three-periodic nets and tilings: minimal nets. <i>Acta Crystallographica Section A: Foundations and Advances</i> , 2004 , 60, 517-20		91
147	A Combined Experimental-Computational Study on the Effect of Topology on Carbon Dioxide Adsorption in Zeolitic Imidazolate Frameworks. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 24084-24090	3.8	90
146	Urea-Linked Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2018 , 140, 16438-1	1 <u>6644</u> 1	87
145	A Covalent Organic Framework that Exceeds the DOE 2015 Volumetric Target for H2 Uptake at 298 K. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 2671-5	6.4	85
144	A metal-organic framework replete with ordered donor-acceptor catenanes. <i>Chemical Communications</i> , 2010 , 46, 380-2	5.8	84
143	Raman Spectroscopic Investigation of CH4 and N2 Adsorption in Metal®rganic Frameworks. <i>Chemistry of Materials</i> , 2007 , 19, 3681-3685	9.6	84
142	Calcium l-Lactate Frameworks as Naturally Degradable Carriers for Pesticides. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8118-8121	16.4	82
141	Designed amyloid fibers as materials for selective carbon dioxide capture. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 191-6	11.5	82
140	Structure-based design of functional amyloid materials. <i>Journal of the American Chemical Society</i> , 2014 , 136, 18044-51	16.4	82
139	Chemical diversity in a metal-organic framework revealed by fluorescence lifetime imaging. <i>Nature Communications</i> , 2018 , 9, 1647	17.4	8o
138	An Open-Framework Germanate with Polycubane-Like Topology. <i>Angewandte Chemie - International Edition</i> , 1999 , 38, 653-655	16.4	79
137	A Porous Covalent Organic Framework with Voided Square Grid Topology for Atmospheric Water Harvesting. <i>Journal of the American Chemical Society</i> , 2020 , 142, 2218-2221	16.4	78
136	Rigid-strut-containing crown ethers and [2]catenanes for incorporation into metal-organic frameworks. <i>Chemistry - A European Journal</i> , 2009 , 15, 13356-80	4.8	77
135	Metal-Organic Frameworks for Water Harvesting from Air, Anywhere, Anytime. <i>ACS Central Science</i> , 2020 , 6, 1348-1354	16.8	77
134	Sequencing of metals in multivariate metal-organic frameworks. <i>Science</i> , 2020 , 369, 674-680	33.3	76
133	A Combined Experimental Computational Investigation of Methane Adsorption and Selectivity in a Series of Isoreticular Zeolitic Imidazolate Frameworks. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 10326-	₹ <mark>8</mark> 33!	5 ⁷²
132	Anisotropic reticular chemistry. <i>Nature Reviews Materials</i> , 2020 , 5, 764-779	73.3	72

131	Metal-organic frameworks with designed chiral recognition sites. <i>Chemical Communications</i> , 2010 , 46, 4911-3	5.8	71
130	Reticular Chemistry and Metal-Organic Frameworks for Clean Energy. MRS Bulletin, 2009, 34, 682-690	3.2	70
129	Spiers Memorial Lecture:. Progress and prospects of reticular chemistry. <i>Faraday Discussions</i> , 2017 , 201, 9-45	3.6	67
128	HeterogenitEinnerhalb von OrdnungEn Metall-organischen GerEten. <i>Angewandte Chemie</i> , 2015 , 127, 3480-3494	3.6	67
127	Conceptual Advances from Werner Complexes to Metal-Organic Frameworks. <i>ACS Central Science</i> , 2018 , 4, 1457-1464	16.8	67
126	Isotherms of individual pores by gas adsorption crystallography. <i>Nature Chemistry</i> , 2019 , 11, 562-570	17.6	64
125	Design of higher valency in covalent organic frameworks. <i>Science</i> , 2020 , 370,	33.3	64
124	Two Principles of Reticular Chemistry Uncovered in a Metal-Organic Framework of Heterotritopic Linkers and Infinite Secondary Building Units. <i>Journal of the American Chemical Society</i> , 2016 , 138, 1082	16 ¹ 6·4	63
123	Molecular Retrofitting Adapts a Metal-Organic Framework to Extreme Pressure. <i>ACS Central Science</i> , 2017 , 3, 662-667	16.8	59
122	Dielectrophoresis-assembled zeolitic imidazolate framework nanoparticle-coupled resonators for highly sensitive and selective gas detection. <i>Nano Letters</i> , 2013 , 13, 5271-6	11.5	59
121	Framework mobility in the metalorganic framework crystal IRMOF-3: Evidence for aromatic ring and amine rotation. <i>Journal of Molecular Structure</i> , 2011 , 1004, 94-101	3.4	59
120	Raman spectra of hydrogen and deuterium adsorbed on a metal ö rganic framework. <i>Chemical Physics Letters</i> , 2005 , 411, 516-519	2.5	59
119	Tuning the Interplay between Selectivity and Permeability of ZIF-7 Mixed Matrix Membranes. <i>ACS Applied Materials & District Membranes</i> , 2017 , 9, 33401-33407	9.5	58
118	Linking Molybdenum-Sulfur Clusters for Electrocatalytic Hydrogen Evolution. <i>Journal of the American Chemical Society</i> , 2018 , 140, 13618-13622	16.4	57
117	Molecular Weaving of Covalent Organic Frameworks for Adaptive Guest Inclusion. <i>Journal of the American Chemical Society</i> , 2018 , 140, 16015-16019	16.4	56
116	Azulene based metal-organic frameworks for strong adsorption of H2. <i>Chemical Communications</i> , 2010 , 46, 7981-3	5.8	55
115	Metal©rganic Frameworks from Edible Natural Products. <i>Angewandte Chemie</i> , 2010 , 122, 8812-8816	3.6	55
114	Reticular Synthesis of Multinary Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11420-11424	16.4	54

(2015-2019)

113	3D Covalent Organic Frameworks of Interlocking 1D Square Ribbons. <i>Journal of the American Chemical Society</i> , 2019 , 141, 677-683	16.4	54	
112	Nanoporous Transparent MOF Glasses with Accessible Internal Surface. <i>Journal of the American Chemical Society</i> , 2016 , 138, 10818-21	16.4	53	
111	Cooperative effects at the interface of nanocrystalline metalorganic frameworks. <i>Nano Research</i> , 2016 , 9, 47-58	10	53	•
110	Hydroisomerization of n-Hexane Using Acidified Metal-Organic Framework and Platinum Nanoparticles. <i>Journal of the American Chemical Society</i> , 2017 , 139, 12382-12385	16.4	53	
109	Computation of aromatic C3N4 networks and synthesis of the molecular precursor N(C3N3)3Cl6. Chemistry - A European Journal, 2003, 9, 4197-201	4.8	53	
108	Ge2ZrO6F2[[H2DAB]H2O:1 A 4-Connected Microporous Material with B ow TielBuilding Units and an Exceptional Proportion of 3-Rings. <i>Journal of the American Chemical Society</i> , 2000 , 122, 12409-12410	o ^{16.4}	53	
107	Synthesis of metal@rganic complex arrays. <i>Journal of the American Chemical Society</i> , 2011 , 133, 759-61	16.4	52	
106	Infinite Secondary Building Units and Forbidden Catenation in Metal-Organic Frameworks. Angewandte Chemie, 2002 , 114, 294-297	3.6	52	
105	Multistep Solid-State Organic Synthesis of Carbamate-Linked Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 11253-11258	16.4	51	
104	Reticulating 1D Ribbons into 2D Covalent Organic Frameworks by Imine and Imide Linkages. Journal of the American Chemical Society, 2020 , 142, 2771-2776	16.4	50	
103	Sequence-Dependent Materials. Accounts of Chemical Research, 2017, 50, 532-534	24.3	48	
102	Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting. <i>Science</i> , 2021 , 374, 454-459	33.3	47	
101	Layered Structures Constructed from New Linkages of Ge7(O,OH,F)19 Clusters. <i>Chemistry of Materials</i> , 2003 , 15, 714-718	9.6	46	
100	Characterization of Adsorption Enthalpy of Novel Water-Stable Zeolites and Metal-Organic Frameworks. <i>Scientific Reports</i> , 2016 , 6, 19097	4.9	44	
99	Thermal maps of gases in heterogeneous reactions. <i>Nature</i> , 2013 , 502, 537-40	50.4	43	
98	The folklore and reality of reticular chemistry. Materials Chemistry Frontiers, 2017, 1, 1304-1309	7.8	42	
97	Recent progress in scanning electron microscopy for the characterization of fine structural details of nano materials. <i>Progress in Solid State Chemistry</i> , 2014 , 42, 1-21	8	42	
96	Definitive Molecular Level Characterization of Defects in UiO-66 Crystals. <i>Angewandte Chemie</i> , 2015 , 127, 11314-11319	3.6	41	

95	Ein mikroporles Gerlt aus Lanthanoid-Ionen und organischen Bausteinen. <i>Angewandte Chemie</i> , 1999 , 111, 2712-2716	3.6	41
94	Selective Capture of Carbon Dioxide under Humid Conditions by Hydrophobic Chabazite-Type Zeolitic Imidazolate Frameworks. <i>Angewandte Chemie</i> , 2014 , 126, 10821-10824	3.6	40
93	Open-Framework Solids with Diamond-Like Structures Prepared from Clusters and Metal-Organic Building Blocks. <i>Materials Research Society Symposia Proceedings</i> , 1994 , 371, 15		39
92	Hyperpolarized 129Xe Nuclear Magnetic Resonance Studies of Isoreticular Metal-Organic Frameworks. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 6060-6067	3.8	38
91	Impact of Disordered Guest-Framework Interactions on the Crystallography of Metal-Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2018 , 140, 8958-8964	16.4	38
90	Ester-Linked Crystalline Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2020 , 142, 14450-14454	16.4	35
89	Local Electronic Structure of Molecular Heterojunctions in a Single-Layer 2D Covalent Organic Framework. <i>Advanced Materials</i> , 2019 , 31, e1805941	24	35
88	Shape-selective binding of nitriles to the inorganic cavitand, V12O324\(\textit{IMaterials Chemistry and Physics}\), 1991, 29, 97-104	4.4	34
87	Amidation, Esterification, and Thioesterification of a Carboxyl-Functionalized Covalent Organic Framework. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 2023-2027	16.4	34
86	Heterogeneity of functional groups in a metal-organic framework displays magic number ratios. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 5591-6	11.5	32
85	Incorporation of active metal sites in MOFs via in situ generated ligand deficient metal-linker complexes. <i>Chemical Communications</i> , 2011 , 47, 11882-4	5.8	32
84	3D Covalent Organic Frameworks Selectively Crystallized through Conformational Design. <i>Journal of the American Chemical Society</i> , 2020 ,	16.4	32
83	Conversion of hydrogen-bonded manganese(II) and zinc(II) squarate (C4O42) molecules, chains and sheets to three-dimensional cage networks. <i>Journal of the Chemical Society Dalton Transactions</i> , 1995 , 727-732		31
82	Digital Reticular Chemistry. <i>CheM</i> , 2020 , 6, 2219-2241	16.2	31
81	Synthesis and characterization of zirconogermanates. <i>Inorganic Chemistry</i> , 2003 , 42, 5954-9	5.1	30
80	Reticular Chemistry: Molecular Precision in Infinite 2D and 3D. <i>Molecular Frontiers Journal</i> , 2019 , 03, 66	-83 9	28
79	Coordinative Alignment in the Pores of MOFs for the Structural Determination of N-, S-, and P-Containing Organic Compounds Including Complex Chiral Molecules. <i>Journal of the American Chemical Society</i> , 2019 , 141, 18862-18869	16.4	28
78	A Metal©rganic Framework with a Hierarchical System of Pores and Tetrahedral Building Blocks. Angewandte Chemie, 2006, 118, 2590-2595	3.6	27

77	Docking of Cu and Ag in Metal-Organic Frameworks for Adsorption and Separation of Xenon. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 3417-3421	16.4	26
76	Reversible Interpenetration in a Metal D rganic Framework Triggered by Ligand Removal and Addition. <i>Angewandte Chemie</i> , 2012 , 124, 8921-8925	3.6	25
75	Facilitating Laboratory Research Experience Using Reticular Chemistry. <i>Journal of Chemical Education</i> , 2018 , 95, 1512-1519	2.4	23
74	L-Aspartate links for stable sodium metal-organic frameworks. <i>Chemical Communications</i> , 2015 , 51, 174	63.86	22
73	Synthesis and hydrogen adsorption properties of internally polarized 2,6-azulenedicarboxylate based metal B rganic frameworks. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 18823-18830	13	22
72	Covalent Organic Frameworks-Organic Chemistry Beyond the Molecule. <i>Molecules</i> , 2017 , 22,	4.8	21
71	Metal®rganic Frameworks Incorporating Copper-Complexed Rotaxanes. <i>Angewandte Chemie</i> , 2012 , 124, 2202-2205	3.6	21
70	Isomers of metal-organic complex arrays. <i>Inorganic Chemistry</i> , 2012 , 51, 6437-9	5.1	21
69	Preparation of Single Crystals of Coordination Solids in Silica Gels: Synthesis and Structure of Cull(1,4-C4H4N2)(C4O4)(OH2)4. <i>Journal of Solid State Chemistry</i> , 1995 , 117, 256-260	3.3	21
68	Polymer-Induced Heteronucleation for the Discovery of New Extended Solids. <i>Angewandte Chemie</i> , 2006 , 118, 2615-2618	3.6	20
67	Architectural Stabilization of a Gold(III) Catalyst in Metal-Organic Frameworks. <i>CheM</i> , 2020 , 6, 142-152	16.2	19
66	Induced molecule self-organization. <i>Nature</i> , 1991 , 352, 115-116	50.4	18
65	Precise Control of Molecular Self-Diffusion in Isoreticular and Multivariate Metal-Organic Frameworks. <i>ChemPhysChem</i> , 2020 , 21, 32-35	3.2	16
64	Modular synthesis of metal-organic complex arrays containing precisely designed metal sequences. <i>Inorganic Chemistry</i> , 2015 , 54, 1197-9	5.1	15
63	Crystal structures as periodic graphs: the topological genome and graph databases. <i>Structural Chemistry</i> , 2017 , 28, 39-44	1.8	15
62	Synthesis and characterization of the platinum-substituted Keggin anion ⊞2SiPtW11O40(4-). <i>Inorganic Chemistry</i> , 2014 , 53, 13239-46	5.1	15
61	One-step synthesis and structure of an oligo(spiro-orthocarbonate). <i>Journal of the American Chemical Society</i> , 2002 , 124, 4942-3	16.4	15
60	Carbon Dioxide Capture Chemistry of Amino Acid Functionalized Metal-Organic Frameworks in Humid Flue Gas <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	15

59	Ein Germanat mit offener Ger\(\mathbb{B}\)tstruktur und Polycuban-artiger Topologie. <i>Angewandte Chemie</i> , 1999 , 111, 682-685	3.6	14
58	Response to Comment on "Water harvesting from air with metal-organic frameworks powered by natural sunlight". <i>Science</i> , 2017 , 358,	33.3	13
57	Catalysis in MOFs: general discussion. <i>Faraday Discussions</i> , 2017 , 201, 369-394	3.6	12
56	Zeolitic imidazolate framework-coupled resonators for enhanced gas detection. <i>Journal of Micromechanics and Microengineering</i> , 2013 , 23, 125027	2	12
55	How Reproducible are Surface Areas Calculated from the BET Equation?. Advanced Materials,2201502	24	12
54	Porosity in Metal®rganic Compounds 2016 , 200-219		10
53	A water-soluble metal-organic complex array as a multinuclear heterometallic peptide amphiphile that shows unconventional anion dependency in its self-assembly. <i>Chemical Communications</i> , 2016 , 52, 1579-81	5.8	8
52	Crystalline fibers of metal-peptide double ladders. <i>Inorganic Chemistry</i> , 2013 , 52, 13818-20	5.1	8
51	New directions in gas sorption and separation with MOFs: general discussion. <i>Faraday Discussions</i> , 2017 , 201, 175-194	3.6	6
50	The Development of Global Science. ACS Central Science, 2015, 1, 18-23	16.8	5
49	Electronic, magnetic and photophysical properties of MOFs and COFs: general discussion. <i>Faraday Discussions</i> , 2017 , 201, 87-99	3.6	5
48	Strategies for Hydrogen Storage in MetalØrganic Frameworks. <i>ChemInform</i> , 2005 , 36, no		5
47	Amidation, Esterification, and Thioesterification of a Carboxyl-Functionalized Covalent Organic Framework. <i>Angewandte Chemie</i> , 2020 , 132, 2039-2043	3.6	5
46	Docking of Cul and Agl in Metal®rganic Frameworks for Adsorption and Separation of Xenon. <i>Angewandte Chemie</i> , 2021 , 133, 3459-3463	3.6	5
45	Reticular Chemistry of Metal Organic Frameworks Composed of Copper and Zinc Metal Oxide Secondary Building Units as Nodes 2016 , 41-72		4
44	Emergence of Metal-Organic Frameworks 2019 , 1-27		3
43	Individually Encapsulated Frame-in-Frame Structure 2020 , 2, 685-690		3
42	MOFs modeling and theory: general discussion. <i>Faraday Discussions</i> , 2017 , 201, 233-245	3.6	3

41	Liquid- and Gas-Phase Separation in MOFs 2019 , 365-393		2
40	Water Sorption Applications of MOFs 2019 , 395-427		2
39	Response to Comment on "Water harvesting from air with metal-organic frameworks powered by natural sunlight". <i>Science</i> , 2017 , 358,	33.3	2
38	Cover Picture: Metal©rganic Frameworks from Edible Natural Products (Angew. Chem. Int. Ed. 46/2010). <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 8535-8535	16.4	2
37	Structural study of new hydrocarbon nano-crystals by energy-filtered electron diffraction. <i>Ultramicroscopy</i> , 2004 , 98, 145-50	3.1	2
36	Reticular Chemistry and Harvesting Water from Desert Air 2020 ,		2
35	Entanglement of Square Nets in Covalent Organic Frameworks <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	2
34	Single Crystals Heterogeneity Impacts the Intrinsic and Extrinsic Properties of Metal-Organic Frameworks. <i>Advanced Materials</i> , 2021 , e2104530	24	2
33	Metal coordination as a template strategy to make resilient woven materials. <i>Bulletin of Japan Society of Coordination Chemistry</i> , 2018 , 71, 12-17	0.3	2
32	An Open-Framework Germanate with Polycubane-Like Topology 1999 , 38, 653		2
31	Hydration for Clean Air Today <i>Molecular Frontiers Journal</i> , 2021 , 5, 1-4	0.9	2
30	The Applications of Reticular Framework Materials 2019 , 285-293		1
29	CO2 Capture and Sequestration 2019 , 313-338		1
28	Metal-Organic Polyhedra and Covalent Organic Polyhedra 2019 , 453-462		1
27	Determination and Design of Porosity 2019 , 29-56		1
26	Zeolitic Imidazolate Frameworks 2019, 463-479		1
25	Building Units of MOFs 2019 , 57-81		1
24	Historical Perspective on the Discovery of Covalent Organic Frameworks 2019 , 177-195		1

23	Reticular Design of Covalent Organic Frameworks 2019 , 225-243		1
22	First woven covalent organic framework solved using electron crystallography 2016 , 637-638		1
21	Synthesis of a Water-soluble Metal-Organic Complex Array. Journal of Visualized Experiments, 2016,	1.6	1
20	Chemistry and Applications of Porous Metal@rganic Frameworks 2008 , 247		1
19	Reticular Chemistry: Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks. <i>Cheminform</i> , 2005 , 36, no		1
18	Building a Global Culture of Science-The Vietnam Experience. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 1552-1560	16.4	1
17	'Eye' of the molecule-a viewpoint. <i>Faraday Discussions</i> , 2021 , 231, 145-149	3.6	1
16	From Molecules to Frameworks to Superframework Crystals. <i>Advanced Materials</i> , 2021 , 33, e2103808	24	1
15	Aufbau einer globalen Wissenschaftskultur Idie Vietnam-Erfahrung. <i>Angewandte Chemie</i> , 2019 , 131, 1566-1575	3.6	О
14	Envisioning the Air Economy Powered by Reticular Chemistry and Sunlight for Clean Air, Clean Energy, and Clean Water. <i>Molecular Frontiers Journal</i> ,1-8	0.9	O
13	Parallel Worlds Meet at Designed Interfaces with a Vast Number of Potential Frameworks. <i>Biochemistry</i> , 2019 , 58, 3823-3824	3.2	
12	Functionalization of COFs 2019 , 245-266		
11	Nanoscopic and Macroscopic Structuring of Covalent Organic Frameworks 2019 , 267-283		
10	The Basics of Gas Sorption and Separation in MOFs 2019 , 295-311		
9	Hydrogen and Methane Storage in MOFs 2019 , 339-363		
8	Dynamic Frameworks 2019 , 481-496		
7	Binary Metal-Organic Frameworks 2019 , 83-119		
6	Complexity and Heterogeneity in MOFs 2019 , 121-144		

LIST OF PUBLICATIONS

5 Functionalization of MOFs **2019**, 145-176

4	Linkages in Covalent Organic Frameworks 2019 , 197-223	
3	REktitelbild: Selective Capture of Carbon Dioxide under Humid Conditions by Hydrophobic Chabazite-Type Zeolitic Imidazolate Frameworks (Angew. Chem. 40/2014). <i>Angewandte Chemie</i> , 2014 , 126, 11004-11004	3.6
2	Titelbild: Metal©rganic Frameworks from Edible Natural Products (Angew. Chem. 46/2010). <i>Angewandte Chemie</i> , 2010 , 122, 8715-8715	3.6
1	Innenröktitelbild: Docking of CuI and AgI in Metal Drganic Frameworks for Adsorption and Separation of Xenon (Angew. Chem. 7/2021). <i>Angewandte Chemie</i> , 2021 , 133, 3867-3867	3.6