Soha M Albukhari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/508200/publications.pdf

Version: 2024-02-01

23 papers 524 citations

687363 13 h-index 713466 21 g-index

23 all docs 23 docs citations

 $\begin{array}{c} 23 \\ times \ ranked \end{array}$

450 citing authors

#	Article	IF	CITATIONS
1	Construction of mesoporous CuMn2O4/g-C3N4 heterojunctions as effective photocatalysts for reduction and removal of mercury ions. Journal of Materials Science: Materials in Electronics, 2022, 33, 190-202.	2.2	5
2	Mesoporous tellurium oxide incorporated g-C3N4 for boosted photoinduced – visible-light reduction of Hg(II). Inorganic Chemistry Communication, 2022, 136, 109134.	3.9	1
3	Design of Ag3VO4/ZnO nanocrystals as visible-light-active photocatalyst for efficient and rapid oxidation of ciprofloxacin antibiotic waste. Journal of the Taiwan Institute of Chemical Engineers, 2022, 133, 104268.	5.3	32
4	One-step preparation of RGO/Fe3O4–FeVO4 nanocomposites as highly effective photocatalysts under natural sunlight illumination. Scientific Reports, 2022, 12, 6565.	3.3	14
5	Removal of Malachite Green Dye from Water Using MXene (Ti3C2) Nanosheets. Sustainability, 2022, 14, 5996.	3.2	8
6	Synthesis and Characterization of Green ZnO@polynaniline/Bentonite Tripartite Structure (G.Zn@PN/BE) as Adsorbent for As (V) Ions: Integration, Steric, and Energetic Properties. Polymers, 2022, 14, 2329.	4. 5	34
7	Combination Effect of Novel Bimetallic Ag-Ni Nanoparticles with Fluconazole against Candida albicans. Journal of Fungi (Basel, Switzerland), 2022, 8, 733.	3.5	20
8	Intense Visible-Light Absorption in SrRuO ₃ /C ₃ N ₄ Heterostructures for the Highly Efficient Reduction of Hg(II). ACS Omega, 2021, 6, 14713-14725.	3 . 5	11
9	Mesoporous V2O5/g-C3N4 Nanocomposites for Promoted Mercury (II) Ions Reduction Under Visible Light. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 4209-4221.	3.7	32
10	Sol–gel synthesis of photoactive Ag2O/Y3Fe5O12 nanojunctions for promoted degradation of ciprofloxacin under visible light. Applied Nanoscience (Switzerland), 2021, 11, 2103-2112.	3.1	17
11	Ag/Ag2O-decorated sol-gel-processed TeO2 nanojunctions for enhanced H2 production under visible light. Journal of Molecular Liquids, 2021, 336, 116870.	4.9	32
12	Insight into the role of the zeolitization process in enhancing the adsorption performance of kaolinite/diatomite geopolymer for effective retention of Sr (II) ions; batch and column studies. Journal of Environmental Management, 2021, 294, 112984.	7.8	26
13	Highly Dispersed Pt Nanoparticle-Doped Mesoporous ZnO Photocatalysts for Promoting Photoconversion of CO ₂ to Methanol. ACS Omega, 2021, 6, 23378-23388.	3.5	10
14	Photoactivity enhancement of La-doped NaTaO3 nanocrystals by CuO decoration toward fast oxidation of ciprofloxacin under visible light. Ceramics International, 2021, 47, 28884-28891.	4.8	20
15	Synthesis of zeolite/geopolymer composite for enhanced sequestration of phosphate (PO43â^') and ammonium (NH4+) ions; equilibrium properties and realistic study. Journal of Environmental Management, 2021, 300, 113723.	7.8	19
16	Virus and chlorine adsorption onto guanidine modified cellulose nanofibers using covalent and hydrogen bonding. Carbohydrate Research, 2020, 498, 108153.	2.3	12
17	Highly selective heteroaromatic sulfur containing polyamides for Hg+2 environmental remediation. Designed Monomers and Polymers, 2020, 23, 25-39.	1.6	3
18	Biodegradable lignin as a reactive raw material in UV curable systems. Polymer-Plastics Technology and Materials, 2020, 59, 1387-1406.	1.3	5

#	Article	IF	CITATIONS
19	Catalytic reduction of nitrophenols and dyes using silver nanoparticles @ cellulose polymer paper for the resolution of waste water treatment challenges. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 548-561.	4.7	155
20	Adsorption, equilibrium isotherm, and thermodynamic studies to the removal of acid orange 7. Materials Chemistry and Physics, 2019, 232, 109-120.	4.0	54
21	The crystal structure of (4 <i>Z</i>)-2-[(<i>E</i>)-(1-ethyl-3,3-dimethyl-1,3-dihydro-2 <i>H</i> -indol-2-ylidene)methyl]-4-[(1-ethyl-3,3-dimethyl-3)-dimethyl-3)-dimethyl-3,3-di	ethyl-3 <i>I</i>	H/i>-indoliun
22	The crystal structure of (<i>E</i>)-3-(4-(dimethylamino)styryl)-5,5-dimethylcyclohex-2-en-1-one, C ₁₈ H ₂₃ NO. Zeitschrift Fur Kristallographie - New Crystal Structures, 2019, 234, 953-955.	0.3	0
23	Comparing Leaching of Different Copper Oxide Nanoparticles and Ammoniacal Copper Salt from Wood. Macromolecular Materials and Engineering, 2013, 298, 1335-1343.	3.6	14