Manuela A Scarselli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5081972/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High graphene permeability for room temperature silicon deposition: The role of defects. Carbon, 2020, 158, 631-641.	10.3	9
2	The potentially crucial role of quasi-particle interferences for the growth of silicene on graphite. Nano Research, 2020, 13, 2378-2383.	10.4	6
3	Functional rewiring across spinal injuries via biomimetic nanofiber scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25212-25218.	7.1	23
4	Scanning tunneling microscopy and Raman evidence of silicene nanosheets intercalated into graphite surfaces at room temperature. Nanoscale, 2019, 11, 6145-6152.	5.6	14
5	Silicene Nanostructures Grown on Graphene Covered SiC (0001) Substrate. International Journal of Nanoscience, 2019, 18, 1940039.	0.7	2
6	MoO3 films grown on polycrystalline Cu: Morphological, structural, and electronic properties. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	2.1	15
7	(Invited) 3D Multifunctional Carbon Nanotube Networks. ECS Transactions, 2018, 86, 85-96.	0.5	0
8	Functionalization of Carbon Spheres with a Porphyrinâ^'Ferrocene Dyad. ChemPhysChem, 2018, 19, 2243-2249.	2.1	12
9	Carbon nanotube sponges as tunable materials for electromagnetic applications. Nanotechnology, 2018, 29, 375202.	2.6	7
10	Influence of Iron Catalyst in the Carbon Spheres Synthesis for Energy and Electrochemical Applications. Advanced Materials Interfaces, 2018, 5, 1800070.	3.7	8
11	Raman investigation of air-stable silicene nanosheets on an inert graphite surface. Nano Research, 2018, 11, 5879-5889.	10.4	21
12	Magnetic carbon spheres and their derivatives combined with printed electrochemical sensors. Electrochimica Acta, 2018, 282, 247-254.	5.2	7
13	(Invited) 3D Multifunctional Carbon Nanotube Networks. ECS Meeting Abstracts, 2018, , .	0.0	0
14	A new green methodology for surface modification of diatomite filler in elastomers. Materials Chemistry and Physics, 2017, 194, 253-260.	4.0	54
15	Tunable electromagnetic response of free-standing 3D carbon nanotube network in the Ka-band. , 2017, , .		0
16	A bioinspired dye sensitized solar cell based on a rhodamine-functionalized peptide immobilized on nanocrystalline TiO 2. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 347, 227-234.	3.9	5
17	Coating ZnO nanoparticle films with DNA nanolayers for enhancing the electron extracting properties and performance of polymer solar cells. Nanoscale, 2017, 9, 19031-19038.	5.6	39
18	Are Two Better Than One? A New Approach for Multidentate Grafting of Peptides to a Gold Substrate. Zeitschrift Fur Physikalische Chemie, 2016, 230, 1351-1371.	2.8	1

#	Article	IF	CITATIONS
19	Solar Cells Incorporating Water/Alcohol-Soluble Electron-Extracting DNA Nanolayers. ACS Energy Letters, 2016, 1, 510-515.	17.4	36
20	Ultrafast dynamics in unaligned MWCNTs decorated with metal nanoparticles. Nanotechnology, 2016, 27, 235704.	2.6	1
21	Formation of Silicene Nanosheets on Graphite. ACS Nano, 2016, 10, 11163-11171.	14.6	84
22	3D meshes of carbon nanotubes guide functional reconnection of segregated spinal explants. Science Advances, 2016, 2, e1600087.	10.3	84
23	Transport properties in aggregates of Nb nanowires templated by carbon nanotube films. Carbon, 2016, 105, 544-550.	10.3	8
24	Light induced tunnel effect in CNT-Si photodiode. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 824, 76-78.	1.6	1
25	Record efficiency of air-stable multi-walled carbon nanotube/silicon solar cells. Carbon, 2016, 101, 226-234.	10.3	39
26	Exploiting the hierarchical morphology of single-walled and multi-walled carbon nanotube films for highly hydrophobic coatings. Beilstein Journal of Nanotechnology, 2015, 6, 353-360.	2.8	12
27	Observation of a photoinduced, resonant tunneling effect in a carbon nanotube–silicon heterojunction. Beilstein Journal of Nanotechnology, 2015, 6, 704-710.	2.8	7
28	Super-hydrophobic multi-walled carbon nanotube coatings for stainless steel. Nanotechnology, 2015, 26, 145701.	2.6	58
29	Applications of three-dimensional carbon nanotube networks. Beilstein Journal of Nanotechnology, 2015, 6, 792-798.	2.8	19
30	Multi-Fractal Hierarchy of Single-Walled Carbon Nanotube Hydrophobic Coatings. Scientific Reports, 2015, 5, 8583.	3.3	53
31	Peptide flatlandia: a new-concept peptide for positioning of electroactive probes in proximity to a metal surface. Nanoscale, 2015, 7, 15495-15506.	5.6	15
32	Controlling the thickness of carbon nanotube random network films by the estimation of the absorption coefficient. Carbon, 2015, 95, 28-33.	10.3	20
33	A three-dimensional carbon nanotube network for water treatment. Nanotechnology, 2014, 25, 065701.	2.6	125
34	Selective Optical Switching of Interface-Coupled Relaxation Dynamics in Carbon Nanotube–Si Heterojunctions. Journal of Physical Chemistry C, 2014, 118, 24110-24116.	3.1	10
35	Probing the structure of Fe nanoparticles in multiwall carbon nanotubes grown on a stainless steel substrate. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	6
36	Silicon spectral response extension through single wall carbon nanotubes in hybrid solar cells. Journal of Materials Chemistry C, 2013, 1, 6752.	5.5	21

#	Article	IF	CITATIONS
37	Progress on the development of a silicon–carbon nanotube photodetector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 718, 554-556.	1.6	2
38	Pressure-dependent electrical conductivity of freestanding three-dimensional carbon nanotube network. Applied Physics Letters, 2013, 102, .	3.3	16
39	Direct Evidence of Chemically Inhomogeneous, Nanostructured, Si–O Buried Interfaces and Their Effect on the Efficiency of Carbon Nanotube/Si Photovoltaic Heterojunctions. Journal of Physical Chemistry C, 2013, 117, 18688-18696.	3.1	26
40	Development of new photon detection device for Cherenkov and fluorescence radiation. EPJ Web of Conferences, 2013, 53, 08014.	0.3	2
41	Ferromagnetic Mn-doped Si0.3Ge0.7nanodots self-assembled on Si(100). Journal of Physics Condensed Matter, 2012, 24, 142203.	1.8	6
42	Photoresponse from noble metal nanoparticles-multi walled carbon nanotube composites. Applied Physics Letters, 2012, 101, .	3.3	13
43	Innovative carbon nanotube-silicon large area photodetector. Journal of Instrumentation, 2012, 7, P08013-P08013.	1.2	15
44	Si nanotubes and nanospheres with two-dimensional polycrystalline walls. Nanoscale, 2012, 4, 5195.	5.6	13
45	Playing with Peptides: How to Build a Supramolecular Peptide Nanostructure by Exploiting Helix···Helix Macrodipole Interactions. Langmuir, 2012, 28, 2817-2826.	3.5	30
46	Electronic and optoelectronic nano-devices based on carbon nanotubes. Journal of Physics Condensed Matter, 2012, 24, 313202.	1.8	87
47	Progress in the realization of a silicon-CNT photodetector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2012, 695, 150-153.	1.6	3
48	Structural, electronic and photovoltaic characterization of multiwalled carbon nanotubes grown directly on stainless steel. Beilstein Journal of Nanotechnology, 2012, 3, 360-367.	2.8	8
49	High coercivity of iron-filled carbon nanotubes synthesized on austenitic stainless steel. Carbon, 2012, 50, 718-721.	10.3	19
50	In situ formation of noble metal nanoparticles on multiwalled carbon nanotubes and its implication in metal–nanotube interactions. Carbon, 2012, 50, 875-884.	10.3	40
51	Strain analysis of noble metal islands grown on multiwalled carbon nanotubes. Carbon, 2012, 50, 3616-3621.	10.3	3
52	RECENT RESULTS IN SILICON-CNT PHOTODETECTORS. Astroparticle, Particle, Space Physics, Radiation Interaction, Detectors and Medical Physics Applications, 2012, , 822-828.	0.1	1
53	Carbon nanotube semitransparent electrodes for amorphous silicon based photovoltaic devices. Applied Physics Letters, 2011, 98,	3.3	34
54	Light harvesting with multiwall carbon nanotube/silicon heterojunctions. Nanotechnology, 2011, 22, 115701.	2.6	47

#	Article	IF	CITATIONS
55	Influence of Cu nanoparticle size on the photo-electrochemical response from Cu–multiwall carbon nanotube composites. Nanotechnology, 2011, 22, 035701.	2.6	16
56	Evidence of Multiwall Carbon Nanotube Deformation Caused by Poly(3-hexylthiophene) Adhesion. Journal of Physical Chemistry C, 2011, 115, 6324-6330.	3.1	18
57	Photovoltaic Response of Carbon Nanotube-Silicon Heterojunctions: Effect of Nanotube Film Thickness and Number of Walls. Journal of Nanoscience and Nanotechnology, 2011, 11, 9202-9207.	0.9	8
58	Tuning Photoresponse Through Size Control of Cu Nanoparticles Deposited on Multi Wall Carbon Nanotubes. Journal of Nanoscience and Nanotechnology, 2011, 11, 9321-9325.	0.9	1
59	Photocurrent Generation in Ge Nanocrystal/Si Systems. Journal of Nanoscience and Nanotechnology, 2011, 11, 9227-9231.	0.9	1
60	The synthesis and characterization of carbon nanotubes grown by chemical vapor deposition using a stainless steel catalyst. Carbon, 2011, 49, 3307-3315.	10.3	77
61	Electrical analysis of carbon nanostructures/silicon heterojunctions designed for radiation detection. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 629, 377-381.	1.6	12
62	Microscopic and Spectroscopic Investigation of Poly(3-hexylthiophene) Interaction with Carbon Nanotubes. Polymers, 2011, 3, 1433-1446.	4.5	32
63	Enhanced photocurrent generation from UV-laser-synthesized-single-wall-carbon-nanotubes/n-silicon hybrid planar devices. Applied Physics Letters, 2010, 97, 193105.	3.3	17
64	Towards controlled growth of carbon nanotubes from germanium on nanoindented silicon substrates. , 2010, , .		0
65	Photoresponse induced by Ge nanodots on SiO2/Si substrate. Journal of Non-Crystalline Solids, 2010, 356, 1940-1942.	3.1	3
66	Carbon nanotube synthesis from germanium nanoparticles on patterned substrates. Journal of Non-Crystalline Solids, 2010, 356, 1972-1975.	3.1	5
67	Probing the electronic structure of carbon nanotubes by nanoscale spectroscopy. Nanoscale, 2010, 2, 1611.	5.6	19
68	Regioregular poly(3-hexyl-thiophene) helical self-organization on carbon nanotubes. Applied Physics Letters, 2009, 95, 013304.	3.3	45
69	Photocurrent generation in random networks of multiwall-carbon-nanotubes grown by an "all-laser―process. Applied Physics Letters, 2009, 95, .	3.3	24
70	Photon harvesting with multi wall carbon nanotubes. Superlattices and Microstructures, 2009, 46, 340-346.	3.1	11
71	Comparison of the Local Order in Highly Oriented Pyrolitic Graphite and Bundles of Single-Wall Carbon Nanotubes by Nanoscale Extended Energy Loss Spectra. Journal of Physical Chemistry C, 2009, 113, 4848-4855.	3.1	9
72	Poly(3-hexyl-thiophene) coil-wrapped single wall carbon nanotube investigated by scanning tunneling spectroscopy. Applied Physics Letters, 2009, 95, 143116.	3.3	23

#	Article	IF	CITATIONS
73	Multiwall Carbon Nanotubes Decorated with Copper Nanoparticles: Effect on the Photocurrent Response. Journal of Physical Chemistry C, 2009, 113, 5860-5864.	3.1	31
74	Photocurrent generation from Ge nanodots in the near UV and visible region. Superlattices and Microstructures, 2008, 44, 331-336.	3.1	2
75	Experimental and theoretical study of electronic correlations in carbon nanotubes and graphite from auger spectroscopy. Journal of Physics: Conference Series, 2008, 100, 052082.	0.4	5
76	Anharmonicity in single-wall carbon nanotubes as evidenced by means of extended energy loss fine structure spectroscopy analysis. Physical Review B, 2007, 75, .	3.2	6
77	Electronic correlations in graphite and carbon nanotubes from Auger spectroscopy. Physical Review B, 2007, 76, .	3.2	21
78	Optoelectronic properties in quantum-confined germanium dots. Applied Physics Letters, 2007, 91, 141117.	3.3	23
79	A combined scanning tunneling microscopy and reflectance anisotropy spectroscopy investigation of tetraphenylporphyrin deposited on graphite. Surface Science, 2007, 601, 2607-2610.	1.9	15
80	Studies of the adsorption of tetraphenylporphyrin molecules on graphite. Surface Science, 2007, 601, 5526-5532.	1.9	14
81	Visible and near ultraviolet photocurrent generation in carbon nanotubes. Surface Science, 2007, 601, 2810-2813.	1.9	5
82	Growth of ultrahigh-density quantum-confined germanium dots on SiO2 thin films. Applied Physics Letters, 2006, 89, 063122.	3.3	28
83	Large photocurrent generation in multiwall carbon nanotubes. Applied Physics Letters, 2006, 89, 253107.	3.3	46
84	Static and dynamic features of a helical hexapeptide chemisorbed on a gold surface. Materials Science and Engineering C, 2006, 26, 918-923.	7.3	16
85	Formation and ordering of Ge nanocrystals on SiO2 using FIB nanolithography. Materials Science in Semiconductor Processing, 2006, 9, 812-816.	4.0	7
86	Densely-packed self-assembled monolayers on gold surfaces from a conformationally constrained helical hexapeptide. Surface Science, 2006, 600, 409-416.	1.9	27
87	Silicon nanotubes: Synthesis and characterization. Thin Solid Films, 2006, 508, 226-230.	1.8	86
88	XPS and STM study of SiC synthesized by acetylene and disilane reaction with the Si(100)2×1 surface. Surface Science, 2005, 582, 125-136.	1.9	28
89	Packing-induced electronic structure changes in bundled single-wall carbon nanotubes. Applied Physics Letters, 2005, 87, 103106.	3.3	15
90	Experimental imaging of silicon nanotubes. Applied Physics Letters, 2005, 86, 231901.	3.3	128

6

#	Article	IF	CITATIONS
91	Carbon induced restructuring of the Si(111) surface. Physical Review B, 2004, 69, .	3.2	17
92	Effect of coiling on the electronic properties along single-wall carbon nanotubes. Applied Physics Letters, 2004, 85, 3857-3859.	3.3	38
93	STM study of Si(1 1 1)7 × 7 reconstructed surface carbonization induced by acetylene. Surface Science, 2004, 559, 223-232.	1.9	8
94	Effect of the silicon surface step on the acetylene reaction with the Si(111)7×7 reconstructed surface. Surface Science, 2004, 566-568, 155-159.	1.9	0
95	Magnetic properties of thin MnGe films investigated by magnetic force microscopy. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1541-E1543.	2.3	3
96	Magnetic properties of rectangular permalloy prisms: a combined magnetic force microscopy and magneto-optic Kerr study. Surface Science, 2004, 566-568, 291-296.	1.9	2
97	Mn/Pt(111) interface investigated at the first stages of formation via AES and STM. Surface Science, 2003, 545, L774-L778.	1.9	3
98	STM study of acetylene reaction with Si(111): observation of a carbon-induced Si(111)â^š3×â^š3R30° reconstruction. Surface Science, 2003, 531, L329-L334.	1.9	25
99	Controlling the quantum dot nucleation site. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 101, 77-88.	3.5	19
100	HIGH FREQUENCY KELVIN PROBE INSTRUMENTATION. , 2002, , .		0
101	Dye-doped zirconia-based Ormosil planar waveguides: optical properties and surface morphology. Journal of Non-Crystalline Solids, 1999, 255, 193-198.	3.1	30
102	Langmuirâ^'Blodgett Films of a Manganese Corrole Derivative. Langmuir, 1999, 15, 1268-1274.	3.5	42
103	Morphological, chemical and electrical characterization of thin film grown on rough and mechanically polished substrates. Journal Physics D: Applied Physics, 1996, 29, 2235-2239.	2.8	13
104	Preparation and characterization of tungsten tips for scanning tunneling microscopy. Review of Scientific Instruments, 1994, 65, 1558-1560.	1.3	26
105	Early stages of nucleation and growth of diamond film by AES, SEM, UPS and optical reflectivity techniques: Surface composition. Physica B: Condensed Matter, 1993, 185, 94-98.	2.7	0
106	Gap-modulated versus constant current mode as a tool to discriminate between DNA and substrate structure in scanning tunneling microscopy. , 1993, , .		0
107	Si(111) and Si(100) surfaces observed in air by scanning tunneling microscopy. Applied Surface Science, 1992, 56-58, 34-38.	6.1	1