Juan Carlos Parajó

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5081779/publications.pdf

Version: 2024-02-01

217 papers

12,419 citations

23567 58 h-index 101 g-index

218 all docs

218 docs citations

218 times ranked

9747 citing authors

#	Article	IF	CITATIONS
1	Hydrothermal processing of lignocellulosic materials. European Journal of Wood and Wood Products, 1999, 57, 191-202.	2.9	692
2	Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochemistry, 2006, 41, 1913-1923.	3.7	444
3	Functionality of oilseed protein products: A review. Food Research International, 2006, 39, 945-963.	6.2	433
4	Recovery, concentration and purification of phenolic compounds by adsorption: A review. Journal of Food Engineering, 2011, 105, 1-27.	5.2	391
5	Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood. Journal of Chemical Technology and Biotechnology, 1999, 74, 1101-1109.	3.2	334
6	Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochemistry, 2006, 41, 447-456.	3.7	334
7	Supercritical CO2Extraction and Purification of Compounds with Antioxidant Activity. Journal of Agricultural and Food Chemistry, 2006, 54, 2441-2469.	5.2	264
8	Production of oligosaccharides by autohydrolysis of brewery's spent grain. Bioresource Technology, 2004, 91, 93-100.	9.6	238
9	Autohydrolysis of corncob: study of non-isothermal operation for xylooligosaccharide production. Journal of Food Engineering, 2002, 52, 211-218.	5.2	236
10	Biotechnological production of xylitol. Part 3: Operation in culture media made from lignocellulose hydrolysates. Bioresource Technology, 1998, 66, 25-40.	9.6	219
11	Furfural production using ionic liquids: A review. Bioresource Technology, 2016, 202, 181-191.	9.6	219
12	Biotechnological production of xylitol. Part 1: Interest of xylitol and fundamentals of its biosynthesis. Bioresource Technology, 1998, 65, 191-201.	9.6	206
13	Kinetic modelling of corncob autohydrolysis. Process Biochemistry, 2001, 36, 571-578.	3.7	179
14	Bioethanol production from hydrothermally pretreated Eucalyptus globulus wood. Bioresource Technology, 2010, 101, 8706-8712.	9.6	168
15	Fractional characterisation of jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba. Biomass and Bioenergy, 2010, 34, 533-538.	5.7	150
16	Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification. Bioresource Technology, 2011, 102, 5896-5904.	9.6	147
17	Purification, Characterization, and Prebiotic Properties of Pectic Oligosaccharides from Orange Peel Wastes. Journal of Agricultural and Food Chemistry, 2014, 62, 9769-9782.	5.2	143
18	Study on the deacetylation of hemicelluloses during the hydrothermal processing of Eucalyptus wood. European Journal of Wood and Wood Products, 2001, 59, 53-59.	2.9	140

#	Article	IF	Citations
19	Non-isothermal autohydrolysis of Eucalyptus wood. Wood Science and Technology, 2002, 36, 111-123.	3.2	123
20	Structural features and assessment of prebiotic activity of refined arabinoxylooligosaccharides from wheat bran. Journal of Functional Foods, 2014, 6, 438-449.	3.4	121
21	Generation of xylose solutions from Eucalyptus globulus wood by autohydrolysis–posthydrolysis processes: posthydrolysis kinetics. Bioresource Technology, 2001, 79, 155-164.	9.6	120
22	Assessment on the Fermentability of Xylooligosaccharides from Rice Husks by Probiotic Bacteria. Journal of Agricultural and Food Chemistry, 2008, 56, 7482-7487.	5. 2	119
23	Ultra- and nanofiltration of aqueous extracts from distilled fermented grape pomace. Journal of Food Engineering, 2009, 91, 587-593.	5.2	115
24	l-Lactic acid production from apple pomace by sequential hydrolysis and fermentation. Bioresource Technology, 2008, 99, 308-319.	9.6	114
25	Refining of autohydrolysis liquors for manufacturing xylooligosaccharides: evaluation of operational strategies. Bioresource Technology, 2005, 96, 889-896.	9.6	113
26	Antioxidant and Antimicrobial Effects of Extracts from Hydrolysates of Lignocellulosic Materials. Journal of Agricultural and Food Chemistry, 2001, 49, 2459-2464.	5.2	110
27	Potential of hydrothermal treatments in lignocellulose biorefineries. Biofuels, Bioproducts and Biorefining, 2012, 6, 219-232.	3.7	109
28	Autohydrolysis of agricultural residues: Study of reaction byproducts. Bioresource Technology, 2007, 98, 1951-1957.	9.6	105
29	Solvent extraction of hemicellulosic wood hydrolysates: a procedure useful for obtaining both detoxified fermentation media and polyphenols with antioxidant activity. Food Chemistry, 1999, 67, 147-153.	8.2	102
30	Bioconversion of posthydrolysed autohydrolysis liquors: an alternative for xylitol production from corn cobs. Enzyme and Microbial Technology, 2002, 31, 431-438.	3.2	101
31	Microwave-assisted dehydration of fructose and inulin to HMF catalyzed by niobium and zirconium phosphate catalysts. Applied Catalysis B: Environmental, 2017, 206, 364-377.	20.2	101
32	Manufacture and prebiotic potential of oligosaccharides derived from industrial solid wastes. Bioresource Technology, 2011, 102, 6112-6119.	9.6	93
33	Simultaneous Extraction and Depolymerization of Fucoidan from Sargassum muticum in Aqueous Media. Marine Drugs, 2013, 11, 4612-4627.	4.6	91
34	Interpretation of deacetylation and hemicellulose hydrolysis during hydrothermal treatments on the basis of the severity factor. Process Biochemistry, 2002, 37, 1067-1073.	3.7	90
35	Production of oligosaccharides and sugars from rye straw: A kinetic approach. Bioresource Technology, 2010, 101, 6676-6684.	9.6	89
36	Bioethanol production from autohydrolyzed Eucalyptus globulus by Simultaneous Saccharification and Fermentation operating at high solids loading. Fuel, 2012, 94, 305-312.	6.4	86

#	Article	IF	Citations
37	Development of culture media containing spent yeast cells of Debaryomyces hansenii and corn steep liquor for lactic acid production with Lactobacillus rhamnosus. International Journal of Food Microbiology, 2004, 97, 93-98.	4.7	85
38	Processing of Rice Husk Autohydrolysis Liquors for Obtaining Food Ingredients. Journal of Agricultural and Food Chemistry, 2004, 52, 7311-7317.	5.2	82
39	Biotechnological production of xylitol. Part 2: Operation in culture media made with commercial sugars. Bioresource Technology, 1998, 65, 203-212.	9.6	79
40	Production of D(-)-lactic acid from cellulose by simultaneous saccharification and fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnology Letters, 2003, 25, 1161-1164.	2.2	79
41	Production of Substituted Oligosaccharides by Hydrolytic Processing of Barley Husks. Industrial & Lamp; Engineering Chemistry Research, 2004, 43, 1608-1614.	3.7	78
42	Study of formic acid as an agent for biomass fractionation. Biomass and Bioenergy, 2002, 22, 213-221.	5.7	77
43	Pectic Oligosacharides from Lemon Peel Wastes: Production, Purification, and Chemical Characterization. Journal of Agricultural and Food Chemistry, 2013, 61, 10043-10053.	5.2	7 3
44	Membrane-Assisted Processing of Xylooligosaccharide-Containing Liquors. Journal of Agricultural and Food Chemistry, 2006, 54, 5430-5436.	5.2	72
45	Production, Refining, Structural Characterization and Fermentability of Rice Husk Xylooligosaccharides. Journal of Agricultural and Food Chemistry, 2010, 58, 3632-3641.	5.2	72
46	Production of antioxidants by non-isothermal autohydrolysis of lignocellulosic wastes. LWT - Food Science and Technology, 2011, 44, 436-442.	5.2	71
47	Manufacture and Refining of Oligosaccharides from Industrial Solid Wastes. Industrial & Engineering Chemistry Research, 2005, 44, 614-620.	3.7	70
48	Simple and Efficient Furfural Production from Xylose in Media Containing 1-Butyl-3-Methylimidazolium Hydrogen Sulfate. Industrial & Engineering Chemistry Research, 2015, 54, 8368-8373.	3.7	69
49	Furfural production from Eucalyptus wood using an Acidic Ionic Liquid. Carbohydrate Polymers, 2016, 146, 20-25.	10.2	68
50	Hydrothermal processing of rice husks: effects of severity on product distribution. Journal of Chemical Technology and Biotechnology, 2008, 83, 965-972.	3.2	65
51	Membrane concentration of antioxidants from Castanea sativa leaves aqueous extracts. Chemical Engineering Journal, 2011, 175, 95-102.	12.7	64
52	Valorization of peanut shells: Manufacture of bioactive oligosaccharides. Carbohydrate Polymers, 2018, 183, 21-28.	10.2	64
53	Production of xylitol from concentrated wood hydrolysates by Debaryomyces hansenii: Effect of the initial cell concentration. Biotechnology Letters, 1996, 18, 593-598.	2.2	62
54	Purification of Xylitol Obtained by Fermentation of Corncob Hydrolysates. Journal of Agricultural and Food Chemistry, 2006, 54, 4430-4435.	5.2	62

#	Article	IF	Citations
55	Kinetic Modeling of Breweryapos;s Spent Grain Autohydrolysis. Biotechnology Progress, 2008, 21, 233-243.	2.6	62
56	Manufacture and Properties of Bifidogenic Saccharides Derived from Wood Mannan. Journal of Agricultural and Food Chemistry, 2012, 60, 4296-4305.	5.2	61
57	Preparation of fermentation media from agricultural wastes and their bioconversion into xylitol. Food Biotechnology, 2000, 14, 79-97.	1.5	60
58	Lactic acid production from corn cobs by simultaneous saccharification and fermentation: a mathematical interpretation. Enzyme and Microbial Technology, 2004, 34, 627-634.	3.2	60
59	Effects of Eucalyptus globulus Wood Autohydrolysis Conditions on the Reaction Products. Journal of Agricultural and Food Chemistry, 2007, 55, 9006-9013.	5.2	59
60	Utilization of Ionic Liquids in Lignocellulose Biorefineries as Agents for Separation, Derivatization, Fractionation, or Pretreatment. Journal of Agricultural and Food Chemistry, 2015, 63, 8093-8102.	5.2	59
61	Production of carotenoids byPhaffia rhodozyma growing on media made from hemicellulosic hydrolysates ofEucalyptus globulus wood. , 1998, 59, 501-506.		58
62	D-Lactic acid production from waste cardboard. Journal of Chemical Technology and Biotechnology, 2005, 80, 76-84.	3.2	58
63	Structural features and properties of soluble products derived from Eucalyptus globulus hemicelluloses. Food Chemistry, 2011, 127, 1798-1807.	8.2	58
64	Production of xylitol from raw wood hydrolysates by Debaryomyces hansenii NRRL Y-7426. Bioprocess and Biosystems Engineering, 1995, 13, 125-131.	0.5	57
65	Evaluation of ultra- and nanofiltration for refining soluble products from rice husk xylan. Bioresource Technology, 2008, 99, 5341-5351.	9.6	57
66	Assessment of the Production of Oligomeric Compounds from Sugar Beet Pulp. Industrial & Engineering Chemistry Research, 2009, 48, 4681-4687.	3.7	57
67	Strategies to improve the bioconversion of processed wood into lactic acid by simultaneous saccharification and fermentation. Journal of Chemical Technology and Biotechnology, 2001, 76, 279-284.	3.2	56
68	Recovery of lactic acid from simultaneous saccharification and fermentation media using anion exchange resins. Bioprocess and Biosystems Engineering, 2003, 25, 357-363.	3.4	55
69	Comparison of Two Posthydrolysis Processes of Brewery's Spent Grain Autohydrolysis Liquor to Produce a Pentose-Containing Culture Medium. Applied Biochemistry and Biotechnology, 2004, 115, 1041-1058.	2.9	55
70	Coproduction of Oligosaccharides and Glucose from Corncobs by Hydrothermal Processing and Enzymatic Hydrolysis. Industrial & Engineering Chemistry Research, 2008, 47, 1336-1345.	3.7	55
71	Pectic oligosaccharides production from orange peel waste by enzymatic hydrolysis. International Journal of Food Science and Technology, 2012, 47, 747-754.	2.7	52
72	Processing of <i>Acacia dealbata</i> in Aqueous Media: First Step of a Wood Biorefinery. Industrial & Lamp; Engineering Chemistry Research, 2009, 48, 6618-6626.	3.7	51

#	Article	IF	Citations
73	Characterization, refining and antioxidant activity of saccharides derived from hemicelluloses of wood and rice husks. Food Chemistry, 2013, 141, 495-502.	8.2	51
74	Kinetics of Catalyzed Organosolv Processing of Pine Wood. Industrial & Engineering Chemistry Research, 1995, 34, 4333-4342.	3.7	50
75	Recovery of antioxidants from industrial waste liquors using membranes and polymeric resins. Journal of Food Engineering, 2010, 96, 127-133.	5.2	48
76	Extracting value from Eucalyptus wood before kraft pulping: Effects of hemicelluloses solubilization on pulp properties. Bioresource Technology, 2011, 102, 5251-5254.	9.6	48
77	Experimental Assessment on the Enzymatic Hydrolysis of Hydrothermally Pretreated Eucalyptus globulus Wood. Industrial & Engineering Chemistry Research, 2010, 49, 4653-4663.	3.7	47
78	Recovery and Concentration of Antioxidants from Winery Wastes. Molecules, 2012, 17, 3008-3024.	3.8	47
79	Optimization of corn stover biorefinery for coproduction of oligomers and second generation bioethanol using non-isothermal autohydrolysis. Industrial Crops and Products, 2014, 54, 32-39.	5 . 2	47
80	Recovery of lignin and furfural from acetic acid–water–HCl pulping liquors. Bioresource Technology, 2003, 90, 339-344.	9.6	46
81	Enhancing the potential of oligosaccharides from corncob autohydrolysis as prebiotic food ingredients. Industrial Crops and Products, 2006, 24, 152-159.	5. 2	45
82	Fractionation of Antioxidants from Autohydrolysis of Barley Husks. Journal of Agricultural and Food Chemistry, 2008, 56, 10651-10659.	5 . 2	45
83	Fractionation and Enzymatic Hydrolysis of Soluble Protein Present in Waste Liquors from Soy Processing. Journal of Agricultural and Food Chemistry, 2005, 53, 7600-7608.	5.2	44
84	Antioxidant activity of extracts produced by solvent extraction of almond shells acid hydrolysates. Food Chemistry, 2007, 101, 193-201.	8.2	44
85	Production, Purification, and in Vitro Evaluation of the Prebiotic Potential of Arabinoxylooligosaccharides from Brewer's Spent Grain. Journal of Agricultural and Food Chemistry, 2015, 63, 8429-8438.	5.2	44
86	Manufacture of Xylose-Based Fermentation Media from Corncobs by Posthydrolysis of Autohydrolysis Liquors. Applied Biochemistry and Biotechnology, 2001, 95, 195-208.	2.9	43
87	Production ofl-lactic Acid and Oligomeric Compounds from Apple Pomace by Simultaneous Saccharification and Fermentation:Â A Response Surface Methodology Assessment. Journal of Agricultural and Food Chemistry, 2007, 55, 5580-5587.	5. 2	43
88	Extracting value-added products before pulping: Hemicellulosic ethanol from <i>Eucalyptus globulus</i> wood. Holzforschung, 2012, 66, 591-599.	1.9	43
89	Sustainable conversion of Pinus pinaster wood into biofuel precursors: A biorefinery approach. Fuel, 2016, 164, 51-58.	6.4	42
90	Targeting sustainable bioeconomy: A new development strategy for Southern European countries. The Manifesto of the European Mezzogiorno. Journal of Cleaner Production, 2018, 172, 3931-3941.	9.3	42

#	Article	IF	CITATIONS
91	Effect of the carbon source on the carotenoid profiles of Phaffia rhodozyma strains. Journal of Industrial Microbiology and Biotechnology, 1997, 19, 263-268.	3.0	40
92	Production of lactic acid from lignocellulose in a single stage of hydrolysis and fermentation. Food Biotechnology, 1997, 11, 45-58.	1.5	39
93	Title is missing!. World Journal of Microbiology and Biotechnology, 2001, 17, 817-822.	3.6	38
94	Charcoal adsorption of phenolic compounds present in distilled grape pomace. Journal of Food Engineering, 2008, 84, 156-163.	5.2	37
95	Manufacture of fibrous reinforcements for biocomposites and hemicellulosic oligomers from bamboo. Chemical Engineering Journal, 2011, 167, 278-287.	12.7	37
96	Emerging prebiotics obtained from lemon and sugar beet byproducts: Evaluation of their in vitro fermentability by probiotic bacteria. LWT - Food Science and Technology, 2019, 109, 17-25.	5.2	37
97	Direct Enzymatic Production of Oligosaccharide Mixtures from Sugar Beet Pulp: Experimental Evaluation and Mathematical Modeling. Journal of Agricultural and Food Chemistry, 2009, 57, 5510-5517.	5. 2	36
98	Studies on the utilization of Pinus pinaster bark. Wood Science and Technology, 1987, 21, 155-166.	3.2	35
99	Production of hemicellulosic sugars from Pinus pinaster wood by sequential steps of aqueous extraction and acid hydrolysis. Wood Science and Technology, 2012, 46, 271-285.	3.2	35
100	Technologies for Eucalyptus wood processing in the scope of biorefineries: A comprehensive review. Bioresource Technology, 2020, 311, 123528.	9.6	35
101	Hydrolytic Processing of Rice Husks in Aqueous Media: A Kinetic Assessment. Collection of Czechoslovak Chemical Communications, 2002, 67, 509-530.	1.0	34
102	Carbon Material and Bioenergetic Balances of Xylitol Production from Corncobs by Debaryomyces hansenii. Biotechnology Progress, 2003, 19, 706-713.	2.6	34
103	Production of pectinâ€derived oligosaccharides from lemon peels by extraction, enzymatic hydrolysis and membrane filtration. Journal of Chemical Technology and Biotechnology, 2016, 91, 234-247.	3.2	34
104	Manufacture of furfural in biphasic media made up of an ionic liquid and a co-solvent. Industrial Crops and Products, 2015, 77, 163-166.	5.2	33
105	One-Pot Alcoholysis of the Lignocellulosic Eucalyptus nitens Biomass to n-Butyl Levulinate, a Valuable Additive for Diesel Motor Fuel. Catalysts, 2020, 10, 509.	3.5	33
106	NH4OH-Based pretreatment for improving the nutritional quality of single-cell protein (SCP). Applied Biochemistry and Biotechnology, 1995, 55, 133-149.	2.9	32
107	Optimization of antioxidants – Extraction from Castanea sativa leaves. Chemical Engineering Journal, 2012, 203, 101-109.	12.7	32
108	Extraction of low-molar-mass phenolics and lipophilic compounds from Pinus pinaster wood with compressed CO2. Journal of Supercritical Fluids, 2013, 81, 193-199.	3.2	32

#	Article	IF	CITATIONS
109	Cogeneration of cellobiose and glucose from pretreated wood and bioconversion to lactic acid: A kinetic study. Journal of Bioscience and Bioengineering, 1999, 87, 787-792.	2.2	31
110	Evaluation of new organosolv dissolving pulps. Part II: Structure and NMMO processability of the pulps. Cellulose, 2004, 11, 85-98.	4.9	31
111	Kinetic assessment on the autohydrolysis of pectin-rich by-products. Chemical Engineering Journal, 2010, 162, 480-486.	12.7	31
112	Enzymatic saccharification of hydrogen peroxide-treated solids from hydrothermal processing of rice husks. Process Biochemistry, 2006, 41, 1244-1252.	3.7	30
113	Sustainable Production of Levulinic Acid from the Cellulosic Fraction of <i>Pinus Pinaster </i> Wood: Operation in Aqueous Media Under Microwave Irradiation. Journal of Wood Chemistry and Technology, 2015, 35, 315-324.	1.7	30
114	Furfural production from birch hemicelluloses by two-step processing: a potential technology for biorefineries. Holzforschung, 2016, 70, 901-910.	1.9	30
115	Prehydrolysis of Eucalyptus wood with dilute sulphuric acid: operation in autoclave. European Journal of Wood and Wood Products, 1994, 52, 102-108.	2.9	29
116	Formic Acid-Peroxyformic Acid Pulping of <i>Fagus sylvatica </i> Iournal of Wood Chemistry and Technology, 2000, 20, 395-413.	1.7	29
117	Purified Phenolics from Hydrothermal Treatments of Biomass: Ability To Protect Sunflower Bulk Oil and Model Food Emulsions from Oxidation. Journal of Agricultural and Food Chemistry, 2011, 59, 9158-9165.	5.2	29
118	Silane-treated lignocellulosic fibers as reinforcement material in polylactic acid biocomposites. Journal of Thermoplastic Composite Materials, 2012, 25, 1005-1022.	4.2	29
119	Furan manufacture from softwood hemicelluloses by aqueous fractionation and further reaction in a catalyzed ionic liquid: a biorefinery approach. Journal of Cleaner Production, 2014, 76, 200-203.	9.3	29
120	A Biorefinery Cascade Conversion of Hemicellulose-Free Eucalyptus Globulus Wood: Production of Concentrated Levulinic Acid Solutions for \hat{I}^3 -Valerolactone Sustainable Preparation. Catalysts, 2018, 8, 169.	3.5	29
121	Biorefinery processes for the valorization of Miscanthus polysaccharides: from constituent sugars to platform chemicals. Industrial Crops and Products, 2019, 134, 309-317.	5.2	29
122	Dilute sulphuric acid pretreatment and enzymatic hydrolysis of Moringa oleifera empty pods. Industrial Crops and Products, 2013, 44, 227-231.	5.2	28
123	Prehydrolysis of Eucalyptus wood with dilute sulphuric acid: operation at atmospheric pressure. European Journal of Wood and Wood Products, 1993, 51, 357-363.	2.9	27
124	Supplementation requirements of brewery's spent grain hydrolysate for biomass and xylitol production by Debaryomyces hansenii CCMI 941. Journal of Industrial Microbiology and Biotechnology, 2006, 33, 646-654.	3.0	27
125	Sustainable materials in automotive applications. Plastics, Rubber and Composites, 2006, 35, 233-241.	2.0	27
126	Effects of hydrothermal processing on the cellulosic fraction of <i>Eucalyptus globulus</i> wood. Holzforschung, 2013, 67, 33-40.	1.9	27

#	Article	IF	CITATIONS
127	Study of charcoal adsorption for improving the production of Xylitol from wood hydrolysates. Bioprocess and Biosystems Engineering, 1996, 16, 39.	0.5	26
128	Aqueous pretreatment of agricultural wastes: Characterization of soluble reaction products. Bioresource Technology, 2009, 100, 5840-5845.	9.6	26
129	Fedâ€batch cultures of <i>phaffia rhodozyma</i> in xyloseâ€containing media made from wood hydrolysates. Food Biotechnology, 1998, 12, 43-55.	1.5	25
130	Formic Acid-Peroxyformic Acid Pulping of Aspen Wood: An Optimization Study. Holzforschung, 2000, 54, 544-552.	1.9	25
131	Carboxymethylcellulose from totally chlorine-free-bleached milox pulps. Bioresource Technology, 2003, 89, 289-296.	9.6	25
132	Simulation of an Organosolv Pulping Process:Â Generalized Material Balances and Design Calculations. Industrial & Design Calculations (1998) Industrial & Design Calcu	3.7	25
133	Rheological behaviour of carboxymethylcellulose manufactured from TCF-bleached Milox pulps. Food Hydrocolloids, 2005, 19, 313-320.	10.7	25
134	Furfural production in biphasic media using an acidic ionic liquid as a catalyst. Carbohydrate Polymers, 2016, 153, 421-428.	10.2	25
135	Potential of Fructooligosaccharides and Xylooligosaccharides as Substrates To Counteract the Undesirable Effects of Several Antibiotics on Elder Fecal Microbiota: A First in Vitro Approach. Journal of Agricultural and Food Chemistry, 2018, 66, 9426-9437.	5.2	25
136	Antioxidant activity of liquors from aqueous treatments of Pinus radiata wood. Wood Science and Technology, 2005, 39, 129-139.	3.2	24
137	Purification of oligosaccharides from rice husk autohydrolysis liquors by ultra- and nano-filtration. Desalination, 2006, 199, 541-543.	8.2	24
138	Experimental evaluation of alkaline treatment as a method for enhancing the enzymatic digestibility of autohydrolysed <i>Acacia dealbata</i> . Journal of Chemical Technology and Biotechnology, 2009, 84, 1070-1077.	3.2	24
139	Valorization of chestnut husks by non-isothermal hydrolysis. Industrial Crops and Products, 2012, 36, 172-176.	5.2	24
140	Acidic processing of hemicellulosic saccharides from pine wood: Product distribution and kinetic modeling. Bioresource Technology, 2014, 162, 192-199.	9.6	24
141	Second-Generation Bioethanol from Residual Woody Biomass. Energy & 2011, 25, 4803-4810.	5.1	23
142	Recovery of bioactive compounds from Pinus pinaster wood by consecutive extraction stages. Wood Science and Technology, 2014, 48, 311-323.	3.2	23
143	Fermentative production of fumaric acid from <i>Eucalyptus globulus</i> Journal of Chemical Technology and Biotechnology, 2012, 87, 1036-1040.	3.2	22
144	Manufacture of Levulinic Acid from Pine Wood Hemicelluloses: A Kinetic Assessment. Industrial & Engineering Chemistry Research, 2013, 52, 3951-3957.	3.7	22

#	Article	IF	Citations
145	Production of nutraceutics from chestnut burs by hydrolytic treatment. Food Research International, 2014, 65, 359-366.	6.2	22
146	Prebiotic effects of pectooligosaccharides obtained from lemon peel on the microbiota from elderly donors using an $\langle i \rangle$ in vitro $\langle i \rangle$ continuous colon model (TIM-2). Food and Function, 2020, 11, 9984-9999.	4.6	21
147	Sustainable Production of Furfural in Biphasic Reactors Using Terpenoids and Hydrophobic Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2021, 9, 10266-10275.	6.7	21
148	Purification of oligosaccharides obtained from Pinus pinaster hemicelluloses by diafiltration. Desalination and Water Treatment, 2011, 27, 48-53.	1.0	20
149	Manufacture, Characterization, and Properties of Poly-(lactic acid) and its Blends with Esterified Pine Lignin. BioResources, 2016, 11, .	1.0	20
150	Preparation of wood adhesives by polycondensation of phenolic acids from pinus pinaster bark with resoles. European Journal of Wood and Wood Products, 1989, 47, 491-494.	2.9	19
151	Valorization of residual woody biomass (<i>Olea europaea</i> trimmings) based on aqueous fractionation. Journal of Chemical Technology and Biotechnology, 2012, 87, 87-94.	3.2	19
152	Fractionation of extracted hemicellulosic saccharides from Pinus pinaster wood by multistep membrane processing. Journal of Membrane Science, 2013, 428, 281-289.	8.2	19
153	Manufacture of Furfural from Xylan-containing Biomass by Acidic Processing of Hemicellulose-Derived Saccharides in Biphasic Media Using Microwave Heating. Journal of Wood Chemistry and Technology, 2018, 38, 198-213.	1.7	19
154	Organosolv processing of vine shoots: Fractionation and conversion of hemicellulosic sugars into platform chemicals by microwave irradiation. Bioresource Technology, 2021, 342, 125967.	9.6	19
155	Aqueous processing of Pinus pinaster wood: Kinetics of polysaccharide breakdown. Chemical Engineering Journal, 2013, 231, 380-387.	12.7	18
156	Water-Soluble Components of Pinus pinaster Wood. BioResources, 2013, 8, .	1.0	18
157	Simulation of Acetosolv Pulping of <i>Eucalyptus </i> Wood. Journal of Wood Chemistry and Technology, 1999, 19, 225-246.	1.7	17
158	Optimization of beech wood pulping in catalyzed acetic acid media. Canadian Journal of Chemical Engineering, 2000, 78, 964-973.	1.7	17
159	Totally chlorine-free bleaching of Acetosolv pulps: a clean approach to dissolving pulp manufacture. Journal of Chemical Technology and Biotechnology, 2001, 76, 1117-1123.	3.2	17
160	Assesment on the chemical fractionation of Eucalyptus nitens wood: Characterization of the products derived from the structural components. Bioresource Technology, 2019, 281, 269-276.	9.6	17
161	TCF bleaching of hardwood pulps obtained in organic acid media: Production of viscose-grade pulps. European Journal of Wood and Wood Products, 2003, 61, 363-368.	2.9	16
162	Dissolving pulp from TCF bleached Acetosolv beech pulp. Journal of Chemical Technology and Biotechnology, 2004, 79, 1098-1104.	3.2	16

#	Article	IF	Citations
163	Ultrafiltration of industrial waste liquors from the manufacture of soy protein concentrates. Journal of Chemical Technology and Biotechnology, 2006, 81, 1252-1258.	3 . 2	16
164	Fractionation of industrial solids containing barley husks in aqueous media. Food and Bioproducts Processing, 2009, 87, 208-214.	3.6	16
165	Valuable Polyphenolic Antioxidants from Wine Vinasses. Food and Bioprocess Technology, 2012, 5, 2708-2716.	4.7	16
166	Production of furans from hemicellulosic saccharides in biphasic reaction systems. Holzforschung, 2013, 67, 923-929.	1.9	16
167	Manufacture of Microcrystalline Cellulose from <i>Eucalyptus globulus</i> Wood Using an Environmentally Friendly Biorefinery Method. Journal of Wood Chemistry and Technology, 2014, 34, 8-19.	1.7	16
168	Non-isothermal autohydrolysis of nixtamalized maize pericarp: Production of nutraceutical extracts. LWT - Food Science and Technology, 2014, 58, 550-556.	5.2	16
169	Selective fractionation and enzymatic hydrolysis of Eucalyptus nitens wood. Cellulose, 2019, 26, 1125-1139.	4.9	16
170	Pretreatment of Hazelnut Shells as a Key Strategy for the Solubilization and Valorization of Hemicelluloses into Bioactive Compounds. Agronomy, 2020, 10, 760.	3.0	16
171	Enzymatic hydrolysis of autohydrolyzed barley husks. Journal of Chemical Technology and Biotechnology, 2011, 86, 251-260.	3.2	15
172	Dilute acid pretreatment of starch-containing rice hulls for ethanol production. Holzforschung, 2011, 65, .	1.9	15
173	Selected Process Alternatives for Biomass Refining: A Review. Open Agriculture Journal, 2010, 4, 135-144.	0.8	15
174	Sugars from pine bark by enzymatic hydrolysis effect of sodium chlorite treatments. Wood Science and Technology, 1987, 21, 167-178.	3.2	14
175	Enzymatic Processing of Rice Husk Autohydrolysis Products for Obtaining Low Molecular Weight Oligosaccharides. Food Biotechnology, 2008, 22, 31-46.	1.5	14
176	Manufacture of Prebiotics from Biomass Sources. , 2009, , 535-589.		14
177	Phenolics production from alkaline hydrolysis of autohydrolysis liquors. CYTA - Journal of Food, 2016, 14, 255-265.	1.9	14
178	A biorefinery approach based on fractionation with a cheap industrial by-product for getting value from an invasive woody species. Bioresource Technology, 2014, 173, 301-308.	9.6	13
179	Aqueous fractionation of hardwood: selective glucuronoxylan solubilisation and purification of the reaction products. Journal of Chemical Technology and Biotechnology, 2017, 92, 367-374.	3.2	13
180	Selection of operational conditions in alkaline lixiviation of Pinus pinaster bark. European Journal of Wood and Wood Products, 1986, 44, 415-418.	2.9	12

#	Article	IF	Citations
181	Invasive biomass valorization: environmentally friendly processes for obtaining second generation bioethanol and saccharides from <i>Ulex europ\hat{A}_ius</i>). Journal of Chemical Technology and Biotechnology, 2013, 88, 999-1006.	3.2	12
182	Bioethanol Production from Hydrothermally Pretreated and Delignified Corn Stover by Fed-Batch Simultaneous Saccharification and Fermentation. Energy & Energy & 2014, 28, 1158-1165.	5.1	12
183	A biorefinery strategy for the manufacture and characterization of oligosaccharides and antioxidants from poplar hemicelluloses. Food and Bioproducts Processing, 2020, 123, 398-408.	3.6	12
184	Evaluation of Eucalyptus globulus Wood Processing in Media Made up of Formic Acid, Water, and Hydrogen Peroxide for Dissolving Pulp Production. Industrial & Engineering Chemistry Research, 2001, 40, 413-419.	3.7	11
185	Experimental evaluation of alternative fermentation media for <scp>L</scp> â€lactic acid production from apple pomace. Journal of Chemical Technology and Biotechnology, 2008, 83, 609-617.	3.2	11
186	Manufacture of fibrous reinforcements for biodegradable biocomposites from <i>Citysus scoparius</i> . Journal of Chemical Technology and Biotechnology, 2011, 86, 575-583.	3.2	11
187	Sugar production from cellulosic biosludges generated in a water treatment plant of a Kraft pulp mill. Biochemical Engineering Journal, 2007, 37, 319-327.	3.6	10
188	Ion-Exchange Processing of Fermentation Media Containing Lactic Acid and Oligomeric Saccharides. Industrial & Engineering Chemistry Research, 2010, 49, 3741-3750.	3.7	10
189	Manufacture of Platform Chemicals from Pine Wood Polysaccharides in Media Containing Acidic Ionic Liquids. Polymers, 2020, 12, 1215.	4.5	10
190	Characterization of Eucalyptus nitens Lignins Obtained by Biorefinery Methods Based on Ionic Liquids. Molecules, 2020, 25, 425.	3.8	10
191	Production and Refining of Soluble Products from Eucalyptus globulus Glucuronoxylan. Collection of Czechoslovak Chemical Communications, 2007, 72, 307-320.	1.0	9
192	Lactic acid from apple pomace: a laboratory experiment for teaching valorisation of wastes. CYTA - Journal of Food, 2009, 7, 83-88.	1.9	9
193	Preliminary evaluation of acetic acid-based processes for wood utilization. European Journal of Wood and Wood Products, 1995, 53, 347-353.	2.9	8
194	Totally Chlorine Free Bleaching of Eucalyptus globulus Dissolving Pulps Delignified with Peroxyformic Acid and Formic Acid. Holzforschung, 2002, 56, 60-66.	1.9	8
195	One-Pot Processing of <i>Eucalyptus globulus</i> Wood under Microwave Heating: Simultaneous Delignification and Polysaccharide Conversion into Platform Chemicals. ACS Sustainable Chemistry and Engineering, 2020, 8, 10115-10124.	6.7	8
196	Potential of High- and Low-Acetylated Galactoglucomannooligosaccharides as Modulators of the Microbiota Composition and Their Activity: A Comparison Using the <i>In Vitro</i> Model of the Human Colon TIM-2. Journal of Agricultural and Food Chemistry, 2020, 68, 7617-7629.	5.2	8
197	Effect of selected operational variables on the susceptibility of NaOH-pretreated pine wood to enzymatic hydrolysis: a mathematical approach. Wood Science and Technology, 1994, 28, 297.	3.2	7
198	Development of a generalized phenomenological model describing the kinetics of the enzymatic hydrolysis of NaOH-treated pine wood. Applied Biochemistry and Biotechnology, 1996, 56, 289-299.	2.9	7

#	Article	IF	CITATIONS
199	ANTIOXIDANT ACTIVITY OF FRACTIONS FROM ACID HYDROLYSATES OF ALMOND SHELLS. Journal of Food Process Engineering, 2008, 31, 817-832.	2.9	7
200	Delignification of autohydrolyzed wood in media containing water and a protic ionic liquid. Journal of Wood Chemistry and Technology, 2020, 40, 235-247.	1.7	7
201	Totally Chlorine Free Bleaching of Organosolv Pulps. Journal of Wood Chemistry and Technology, 2003, 23, 161-178.	1.7	6
202	Empirical assessment on the cellulase digestibility of processedEucalyptus wood. Applied Biochemistry and Biotechnology, 1992, 37, 123-139.	2.9	5
203	Multistage Organosolv Pulping: A Method for Obtaining Pulps with Low Hemicellulose Contents. Collection of Czechoslovak Chemical Communications, 2003, 68, 1163-1174.	1.0	5
204	Population Dynamics of Some Relevant Intestinal Microbial Groups in Human Fecal Batch Cultures with Added Fermentable Xylooligosaccharides Obtained from Rice Husks. BioResources, 2013, 8, .	1.0	5
205	Kinetic and economic considerations on the HCl-catalysed acetic acid processing of pine wood. European Journal of Wood and Wood Products, 1996, 54, 119-125.	2.9	4
206	Multi-Stage Hydrothermal Processing of <i>Eucalyptus Globulus </i> Wood: An Experimental Assessment. Journal of Wood Chemistry and Technology, 2019, 39, 329-342.	1.7	4
207	Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood., 1999, 74, 1101.		4
208	Biomimetic Vanadate and Molybdate Systems for Oxidative Upgrading of Iono- and Organosolv Hardand Softwood Lignins. Processes, 2020, 8, 1161.	2.8	3
209	Autocatalytic Fractionation of Wood Hemicelluloses: Modeling of Multistage Operation. Catalysts, 2020, 10, 337.	3.5	3
210	Single-Stage Fractionation of Vine Shoots Using Microwave Heating. Applied Sciences (Switzerland), 2021, 11, 7954.	2.5	3
211	Comparison of Two Posthydrolysis Processes of Brewery's Spent Grain Autohydrolysis Liquor to Produce a Pentose-Containing Culture Medium. , 2004, , 1041-1058.		3
212	Performance of 1-(3-Sulfopropyl)-3-Methylimidazolium Hydrogen Sulfate as a Catalyst for Hardwood Upgrading into Bio-Based Platform Chemicals. Catalysts, 2020, 10, 937.	3.5	2
213	Evaluation of Acidic Ionic Liquids as Catalysts for Furfural Production from Eucalyptus nitens Wood. Molecules, 2022, 27, 4258.	3.8	2
214	Fractionation of <i>Eucalyptus regnans</i> wood: properties of the soluble products and reactivity of the treated solids. Journal of Wood Chemistry and Technology, 2022, 42, 46-57.	1.7	1
215	Assessment on the effects of the operational conditions on the manufacture of PLA-based composites using an integrated compounding–injection moulding machine. Collection of Czechoslovak Chemical Communications, 2011, 76, 1509-1527.	1.0	0
216	Deacetylation of Eucalyptus globulus Acetosolv Pulps in Aqueous Media: A Kinetic Study. Collection of Czechoslovak Chemical Communications, 2001, 66, 1443-1456.	1.0	0

#	Article	lF	CITATIONS
217	Preliminary evaluation of acetic acid-based processes for wood utilization. European Journal of Wood and Wood Products, 1995, 53, 347-353.	2.9	O