

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5081741/publications.pdf Version: 2024-02-01

VANLL

#	Article	IF	CITATIONS
1	Two-way shape memory effect in a Ti–Zr–Nb–Ta high-temperature shape memory alloy. Rare Metals, 2024, 43, 1257-1262.	7.1	0
2	Anticorrosive and antibacterial smart integrated strategy for biomedical magnesium. Journal of Magnesium and Alloys, 2023, 11, 2789-2800.	11.9	3
3	Effects of annealing temperature on microstructures and shape memory effect of Ti-19Zr-11Nb-2Ta alloy sheets. Journal of Alloys and Compounds, 2022, 897, 162728.	5.5	8
4	Synergistic antibacterial photocatalytic and photothermal properties over bowl-shaped TiO2 nanostructures on Ti-19Zr-10Nb-1Fe alloy. International Journal of Energy Production and Management, 2022, 9, rbac025.	3.7	5
5	Improvement in the superelasticity of Ti–19Zr–11Nb–4Ta shape memory alloy caused by aging treatments. Journal of Materials Research and Technology, 2022, 19, 1293-1297.	5.8	2
6	Superelasticity over a wide temperature range in metastable β-Ti shape memory alloys. Journal of Alloys and Compounds, 2021, 853, 157090.	5.5	17
7	Preparation of Ti-Nb-Fe-O Nanotubes on Ti10NbxFe Alloy and the Application for Photocatalytic Degradation under Solar Irradiation. Catalysts, 2021, 11, 327.	3.5	3
8	Recent advances in photocatalytic decomposition of water and pollutants for sustainable application. Chemosphere, 2021, 276, 130201.	8.2	32
9	Improved corrosion behavior of high-purity Mg surface modified by laser scanning and polycaprolactone spin coating. Materials Letters, 2021, 297, 129886.	2.6	3
10	Antibacterial properties and cytocompatibility of Ti-20Zr-10Nb-4Ta alloy surface with Ag microparticles by laser treatment. Surface and Coatings Technology, 2021, 425, 127716.	4.8	7
11	Nano-hydroxyapatite coated TiO2 nanotubes on Ti-19Zr-10Nb-1Fe alloy promotes osteogenesis in vitro. Colloids and Surfaces B: Biointerfaces, 2021, 207, 112019.	5.0	13
12	Improving tribological behavior of laser textured Ti-20Zr-10Nb-4Ta alloy with dimple surface. Materials Letters, 2021, 305, 130876.	2.6	13
13	Nanotubular ZrTiO ₄ Prepared on Sputter Deposited Zrâ^'Ti Films by Anodization. ChemElectroChem, 2021, 8, 4136-4140.	3.4	2
14	Strain induced martensite stabilization in Î ² Ti-Zr-Nb shape memory alloy. Materials Letters, 2020, 259, 126914.	2.6	12
15	Microstructures and optical properties of TiO2/ZrO2 nanotube/nanoporous heterofilm prepared by anodizing of Ti/Zr/Ti multilayer films. Applied Surface Science, 2020, 503, 144316.	6.1	13
16	Characterization and cytocompatibility of hierarchical porous TiO2 coatings incorporated with calcium and strontium by one-step micro-arc oxidation. Materials Science and Engineering C, 2020, 109, 110610.	7.3	36
17	Formation and cytocompatibility of a hierarchical porous coating on Ti-20Zr-10Nb-4Ta alloy by micro-arc oxidation. Surface and Coatings Technology, 2020, 404, 126471.	4.8	12
18	Martensitic transformation, shape memory effect and superelasticity of Ti–xZr–(30–x)Nb–4Ta alloys. Rare Metals, 2019, 38, 965-970.	7.1	21

#	Article	IF	CITATIONS
19	The design strategy of intelligent biomedical magnesium with controlled-release platform. Materials Science and Engineering C, 2019, 97, 254-263.	7.3	7
20	A nanopump for low-temperature and efficient solar water evaporation. Journal of Materials Chemistry A, 2019, 7, 24311-24319.	10.3	34
21	Highly efficient solar steam generation via mass-produced carbon nanosheet frameworks. Carbon, 2019, 145, 352-358.	10.3	57
22	High-temperature deformation behavior of a beta Ti–3.0Al–3.5Cr–2.0Fe–0.1B alloy. Rare Metals, 2018, 3 217-224.	7 _{7.1}	9
23	Tribocorrosion behavior of Ti-30Zr alloy for dental implants. Materials Letters, 2018, 218, 190-192.	2.6	28
24	Corrosion resistance and cytocompatibility of Ti-20Zr-10Nb-4Ta alloy surface modified by a focused fiber laser. Science China Materials, 2018, 61, 516-524.	6.3	8
25	Corrosion Behavior of Fe/Zr Composite Coating on ZK60 Mg Alloy by Ion Implantation and Deposition. Coatings, 2018, 8, 261.	2.6	16
26	In situ synchrotron X-ray diffraction investigations of the physical mechanism of ultra-low strain hardening in Ti-30Zr-10Nb alloy. Acta Materialia, 2018, 154, 45-55.	7.9	40
27	Anodic film growth and silver enrichment during anodizing of an Mg-0.6â€at.% Ag alloy in fluoride-containing organic electrolytes. Electrochimica Acta, 2018, 280, 300-307.	5.2	5
28	Sulfur-doped mesoporous carbon <i>via</i> thermal reduction of CS ₂ by Mg for high-performance supercapacitor electrodes and Li-ion battery anodes. RSC Advances, 2018, 8, 19964-19970.	3.6	13
29	Effect of Zr on the martensitic transformation and the shape memory effect in Ti-Zr-Nb-Ta high-temperature shape memory alloys. Journal of Alloys and Compounds, 2018, 737, 672-677.	5.5	32
30	In vitro corrosion behavior and cytocompatibility of pure Fe implanted with Ta. Surface and Coatings Technology, 2017, 320, 201-205.	4.8	31
31	Phase transformation and microstructure evolution of the deformed Ti-30Zr-5Nb shape memory alloy. Materials Characterization, 2017, 126, 81-85.	4.4	10
32	Effect of annealing temperature on the microstructure and superelasticity of Ti-19Zr-10Nb-1Fe alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 688, 464-469.	5.6	25
33	Tribological behaviour of biomedical Ti–Zr-based shape memory alloys. Rare Metals, 2017, 36, 478-484.	7.1	25
34	Surface microstructures and corrosion resistance of Ni-Ti-Nb shape memory thin films. Applied Surface Science, 2017, 414, 63-67.	6.1	30
35	Biodegradation behavior of magnesium and ZK60 alloy in artificial urine and rat models. Bioactive Materials, 2017, 2, 53-62.	15.6	41
36	Improved cytocompatibility of Mg-1Ca alloy modified by Zn ion implantation and deposition. Materials Letters, 2017, 205, 87-89.	2.6	29

#	Article	IF	CITATIONS
37	Tribocorrosion behaviour of a biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in Ringer's solution. Materials Science and Engineering C, 2017, 76, 1094-1102.	7.3	21
38	Phase transformations and microstructural evolution in Ti-19.5Zr-10Nb-0.5Fe shape memory alloys. Materials Characterization, 2017, 133, 156-164.	4.4	11
39	Martensitic transformations and the shape memory effect in Ti-Zr-Nb-Al high-temperature shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 679, 14-19.	5.6	28
40	In vitro corrosion properties and cytocompatibility of Fe-Ga alloys as potential biodegradable metallic materials. Materials Science and Engineering C, 2017, 71, 60-66.	7.3	41
41	Crystal size induced reduction in thermal hysteresis of Ni-Ti-Nb shape memory thin films. Applied Physics Letters, 2016, 108, .	3.3	5
42	Micro-abrasion–corrosion behaviour of a biomedical Ti–25Nb–3Mo–3Zr–2Sn alloy in simulated physiological fluid. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 63, 361-374.	3.1	24
43	Shape memory behavior of Ti–20Zr–10Nb–5Al alloy subjected to annealing treatment. Rare Metals, 2016, 35, 831-835.	7.1	9
44	Role of Graphene Oxide Liquid Crystals in Hydrothermal Reduction and Supercapacitor Performance. ACS Applied Materials & Interfaces, 2016, 8, 22316-22323.	8.0	37
45	Electrochemical and corrosion behaviors of sputtered TiNi shape memory films. Smart Materials and Structures, 2016, 25, 035039.	3.5	7
46	Microstructures and phase transformations of Ti-30Zr-xNb (x = 5, 7, 9, 13 at.%) shape memory alloys. Materials Characterization, 2016, 122, 1-5.	4.4	30
47	In vitro and in vivo corrosion and histocompatibility of pure Mg and a Mg-6Zn alloy as urinary implants in rat model. Materials Science and Engineering C, 2016, 68, 414-422.	7.3	55
48	Strain induced martensite stabilization and shape memory effect of Ti–20Zr–10Nb–4Ta alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 658, 28-32.	5.6	30
49	Superelasticity, corrosion resistance and biocompatibility of the Ti–19Zr–10Nb–1Fe alloy. Materials Science and Engineering C, 2015, 50, 179-186.	7.3	58
50	Shape memory effect and phase transformations of Ti–19.5Zr–10Nb–0.5Fe alloy. Scripta Materialia, 2015, 101, 99-102.	5.2	27
51	Microstructure and mechanical properties of sintered porous magnesium using polymethyl methacrylate as the space holder. Materials Letters, 2015, 161, 583-586.	2.6	37
52	Effects of tensile and compressive deformation on corrosion behaviour of a Mg–Zn alloy. Corrosion Science, 2015, 90, 445-450.	6.6	76
53	Surface characteristics and corrosion resistance of biodegradable magnesium alloy ZK60 modified by Fe ion implantation and deposition. Progress in Natural Science: Materials International, 2014, 24, 547-553.	4.4	20
54	Microstructure and mechanical properties of Nb- and Mo-modified NiTi–Al-based intermetallics processed by isothermal forging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 594, 229-234.	5.6	8

#	Article	IF	CITATIONS
55	Enhanced wear resistance of NiTi alloy by surface modification with Nb ion implantation. Rare Metals, 2014, 33, 244-248.	7.1	14
56	Nano-hardness, wear resistance and pseudoelasticity of hafnium implanted NiTi shape memory alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 13, 174-184.	3.1	47
57	Ni ion release, osteoblast–material interactions, and hemocompatibility of hafniumâ€implanted NiTi alloy. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 646-659.	3.4	37
58	Shape memory behavior in Ti–Zr alloys. Scripta Materialia, 2011, 64, 584-587.	5.2	89
59	Effective inhibition of nickel release by tantalum-implanted TiNi alloy and its cyto-compatibility evaluation in vitro. Journal of Materials Science, 2011, 46, 2529-2535.	3.7	24
60	Surface characteristics, nano-indentation and corrosion behavior of Nb implanted NiTi alloy. Surface and Coatings Technology, 2011, 205, 4404-4410.	4.8	44
61	Preparation and optoelectronic properties of TiO2 thin films codoped with iron and molybdenum. Rare Metals, 2011, 30, 238-242.	7.1	2
62	Thermal stability of dual-phase Ni58Mn25Ga17 high-temperature shape memory alloy. Scripta Materialia, 2010, 63, 35-38.	5.2	26
63	Microstructure and shape memory effect of Ti–20Zr–10Nb alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 652-656.	5.6	96
64	Effect of Ta2O5/TiO2 thin film on mechanical properties, corrosion and cell behavior of the NiTi alloy implanted with tantalum. Materials Science and Engineering C, 2010, 30, 1227-1235.	7.3	49
65	Microstructures and shape memory characteristics of dual-phase Co–Ni–Ga high-temperature shape memory alloys. Acta Materialia, 2010, 58, 3655-3663.	7.9	47
66	Mechanical properties and oxidation characteristics of TiNiAl(Nb) intermetallics. Intermetallics, 2007, 15, 778-782.	3.9	35
67	Shape memory characteristics of dual-phase Ni–Mn–Ga based high temperature shape memory alloys. Scripta Materialia, 2007, 57, 599-601.	5.2	77
68	Mechanical and shape memory properties of Ni54Mn25Ga21 high-temperature shape memory alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 978-981.	5.6	22
69	Ni–Mn–Ga high-temperature shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440, 1065-1070.	5.6	48
70	Phase transformation behaviors and mechanical properties of TiNiMo shape memory alloys. Intermetallics, 2005, 13, 357-360.	3.9	34
71	Constrained phase-transformation of a TiNi shape-memory alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 219-223.	2.2	32
72	Two-stage recovery strain of prestrained TiNi shape memory alloy after phase transformations under constraint. Materials Letters, 2001, 47, 286-289.	2.6	21

#	Article	IF	CITATIONS
73	Phase transformation behaviors of prestrained TiNi shape memory alloy fibers under the constraint of a hard substrate. Materials Letters, 2001, 49, 224-227.	2.6	11
74	DSC study of the reverse martensitic transformation in prestrained TiNi shape memory alloy in different composites. Materials Letters, 2001, 51, 73-77.	2.6	21
75	Phase stability and hardness of some ternary Ti–Zr based shape memory alloys. International Journal of Smart and Nano Materials, 0, , 1-11.	4.2	4