Wenjun Fang

List of Publications by Citations

Source: https://exaly.com/author-pdf/5081558/wenjun-fang-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

148
papers2,774
citations29
h-index42
g-index153
ext. papers3,305
ext. citations4.9
avg, IF5.31
L-index

#	Paper	IF	Citations
148	MOF Nanoparticles with Encapsulated Autophagy Inhibitor in Controlled Drug Delivery System for Antitumor. <i>ACS Applied Materials & Delivery System for Antitumor. ACS Applied Materials & Delivery System for Action Sy</i>	9.5	170
147	Preparation of Well-Dispersed Silver Nanoparticles for Oil-Based Nanofluids. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 1697-1702	3.9	97
146	Antibacterial Activity, in Vitro Cytotoxicity, and Cell Cycle Arrest of Gemini Quaternary Ammonium Surfactants. <i>Langmuir</i> , 2015 , 31, 12161-9	4	87
145	Fabrication of ovalbumin/Ecarrageenan complex nanoparticles as a novel carrier for curcumin delivery. <i>Food Hydrocolloids</i> , 2019 , 89, 111-121	10.6	78
144	Thermal Cracking of JP-10 under Pressure. <i>Industrial & Discourse Industrial & Industrial & Industrial & Discourse Industrial & Discourse</i>	3.9	68
143	FA-PEG decorated MOF nanoparticles as a targeted drug delivery system for controlled release of an autophagy inhibitor. <i>Biomaterials Science</i> , 2018 , 6, 2582-2590	7.4	59
142	Piperazinium-Based Ionic Liquids with Lactate Anion for Extractive Desulfurization of Fuels. <i>Energy & Energy Fuels</i> , 2014 , 28, 1774-1780	4.1	59
141	Isolation, purification, and antioxidant activities of degraded polysaccharides from Enteromorpha prolifera. <i>International Journal of Biological Macromolecules</i> , 2015 , 81, 1026-30	7.9	53
140	Density, Refractive Index, Viscosity, and Surface Tension of Binary Mixtures ofexo-Tetrahydrodicyclopentadiene with Somen-Alkanes from (293.15 to 313.15) K. <i>Journal of Chemical & Chemica</i>	2.8	52
139	Spontaneous formation of fractal structures on triglyceride surfaces with reference to their super water-repellent properties. <i>Journal of Physical Chemistry B</i> , 2007 , 111, 564-71	3.4	52
138	Antimicrobial activity and cytotoxicity of piperazinium- and guanidinium-based ionic liquids. <i>Journal of Hazardous Materials</i> , 2016 , 307, 73-81	12.8	51
137	Mechanisms and origins of switchable regioselectivity of palladium- and nickel-catalyzed allene hydrosilylation with N-heterocyclic carbene ligands: a theoretical study. <i>Journal of Organic Chemistry</i> , 2014 , 79, 4517-27	4.2	47
136	Development of ovalbumin-pectin nanocomplexes for vitamin D3 encapsulation: Enhanced storage stability and sustained release in simulated gastrointestinal digestion. <i>Food Hydrocolloids</i> , 2020 , 106, 105926	10.6	46
135	Excess Molar Volume along with Viscosity and Refractive Index for Binary Systems of Tricyclo[5.2.1.02.6]decane with Five Cycloalkanes. <i>Journal of Chemical & Chemica</i>	2.8	45
134	Density, Viscosity, and Conductivity of Binary Mixtures of the Ionic Liquid N-(2-Hydroxyethyl)piperazinium Propionate with Water, Methanol, or Ethanol. <i>Journal of Chemical & Mamp; Engineering Data</i> , 2015 , 60, 455-463	2.8	43
133	Coking of Model Hydrocarbon Fuels under Supercritical Condition. <i>Energy & Company Series</i> , 2009, 23, 2997-	30101	42
132	Excess Molar Volume along with Viscosity, Flash Point, and Refractive Index for Binary Mixtures of cis-Decalin or trans-Decalin with C9 to C11n-Alkanes. <i>Journal of Chemical & Data</i> , 2013, 58, 2224-2232	2.8	41

(2011-2014)

131	Density, Viscosity, Refractive Index, and Surface Tension for Six Binary Systems of Adamantane Derivatives with 1-Heptanol and Cyclohexylmethanol. <i>Journal of Chemical & Design Binary Systems of Adamantane Derivatives with 1-Heptanol and Cyclohexylmethanol. Journal of Chemical & Design Binary Systems of Adamantane Derivatives with 1-Heptanol and Cyclohexylmethanol. <i>Journal of Chemical & Design Binary Systems of Adamantane Derivatives with 1-Heptanol and Cyclohexylmethanol. Journal of Chemical & Design Binary Systems of Adamantane Derivatives with 1-Heptanol and Cyclohexylmethanol. <i>Journal of Chemical & Design Binary Systems of Adamantane Derivatives with 1-Heptanol and Cyclohexylmethanol. Journal of Chemical & Design Binary Systems of Adamantane Design Binary </i></i></i>	2.8	36	
130	Heat-sink enhancement of decalin and aviation kerosene prepared as nanofluids with palladium nanoparticles. <i>Fuel</i> , 2014 , 121, 149-156	7.1	36	
129	Critical Micellar Concentrations of Quaternary Ammonium Surfactants with Hydroxyethyl Substituents on Headgroups Determined by Isothermal Titration Calorimetry. <i>Journal of Chemical & Engineering Data</i> , 2010 , 55, 3766-3771	2.8	36	
128	Stability properties of water-based gold and silver nanofluids stabilized by cationic gemini surfactants. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2019 , 97, 458-465	5.3	34	
127	Density, Viscosity, Surface Tension, and Refractive Index for Binary Mixtures of 1,3-Dimethyladamantane with Four C10 Alkanes. <i>Journal of Chemical & Description of Chemical & Description</i> 2014, 59, 775-783	2.8	32	
126	Transfer Enthalpies of Amino Acids and Glycine Peptides from Water to Aqueous Solutions of Sugar Alcohol at 298.15 K. <i>Journal of Chemical & Engineering Data</i> , 2009 , 54, 1426-1429	2.8	32	
125	Densities and Viscosities of Binary Mixtures of JP-10 with n-Octane or n-Decane at Several Temperatures. <i>Journal of Chemical & Engineering Data</i> , 2008 , 53, 2237-2240	2.8	32	
124	Extraction of Aromatics from Hydrocarbon Fuels Using N-Alkyl Piperazinium-Based Ionic Liquids. <i>Energy & Description of Aromatics</i> , 26, 2154-2160	4.1	31	
123	Densities, Viscosities, Refractive Indices, and Surface Tensions of Binary Mixtures of 2,2,4-Trimethylpentane with Several Alkylated Cyclohexanes from (293.15 to 343.15) K. <i>Journal of Chemical & Ch</i>	2.8	30	
122	Novel Guanidinium-Based Ionic Liquids for Highly Efficient SO2 Capture. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 8054-62	3.4	30	
121	Gold/Oil Nanofluids Stabilized by a Gemini Surfactant and Their Catalytic Property. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 8109-8113	3.9	29	
120	Densities and Viscosities of Binary Mixtures of exo-Tetrahydrodicyclopentadiene with N-Undecane or N-Tetradecane at T = (293.15 to 313.15) K. <i>Journal of Chemical & Engineering Data</i> , 2010 , 55, 4108	8 - 411:	3 ²⁹	
119	Hyperbranched poly(amido amine) demulsifiers with ethylenediamine/1,3-propanediamine as an initiator for oil-in-water emulsions with microdroplets. <i>Fuel</i> , 2018 , 226, 381-388	7.1	28	
118	A novel well-dispersed nano-Ni catalyst for endothermic reaction of JP-10. Fuel, 2014 , 117, 932-938	7.1	27	
117	Micellization Parameters of Six Gemini Quaternary Ammonium Surfactants from Measurements of Conductivity and Surface Tension. <i>Journal of Chemical & Conductivity and Surface Tension</i> . <i>Journal of Chemical & Conductivity and Surface Tension</i> .	2.8	27	
116	Density and Viscosity for Binary Mixtures of the Ionic Liquid 2,2-Diethyl-1,1,3,3-Tetramethylguanidinium Ethyl Sulfate with Water, Methanol, or Ethanol. <i>Journal of Chemical & Data</i> , 2016, 61, 1023-1031	2.8	25	
115	Intermolecular interactions between gold clusters and selected amino acids cysteine and glycine: a DFT study. <i>Journal of Molecular Modeling</i> , 2012 , 18, 645-52	2	25	
114	Copper-Dipyridylphosphine-Polymethylhydrosiloxane: A Practical and Effective System for the Asymmetric Catalytic Hydrosilylation of Ketones. <i>Advanced Synthesis and Catalysis</i> , 2011 , 353, 1457-1462	₂ 5.6	25	

113	Methacrylated Hyperbranched Polyglycerol as a High-Efficiency Demulsifier for Oil-in-Water Emulsions. <i>Energy & Emulsions</i> , 2016 , 30, 9939-9946	4.1	25
112	Excess molar volume along with viscosity, refractive index and relative permittivity for binary mixtures of exo -tetrahydrodicyclopentadiene with four octane isomers. <i>Journal of Chemical Thermodynamics</i> , 2015 , 81, 26-33	2.9	24
111	Mesoporous polydopamine with built-in plasmonic core: Traceable and NIR triggered delivery of functional proteins. <i>Biomaterials</i> , 2020 , 238, 119847	15.6	24
110	Spectroscopic studies on thermal-oxidation stability of hydrocarbon fuels. <i>Fuel</i> , 2008 , 87, 3286-3291	7.1	24
109	Derivative of Epigallocatechin-3-gallatea Encapsulated in ZIF-8 with Polyethylene Glycol-Folic Acid Modification for Target and pH-Responsive Drug Release in Anticancer Research. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 4183-4192	5.5	24
108	Surface Activity and Micellization Parameters of Quaternary Ammonium Surfactants Containing a Hydroxyethyl Group. <i>Journal of Chemical & Engineering Data</i> , 2013 , 58, 334-342	2.8	23
107	Densities and Viscosities for Binary Mixtures of the Ionic Liquid N-Ethyl Piperazinium Propionate with n-Alcohols at Several Temperatures. <i>Journal of Chemical & Engineering Data</i> , 2012 , 57, 937-94	2 ^{2.8}	23
106	Enthalpies of Transfer of Amino Acids from Water to Aqueous Cationic Surfactants Solutions at 298.15 K. <i>Journal of Chemical & Engineering Data</i> , 2008 , 53, 942-945	2.8	23
105	Formation mechanism of super water-repellent fractal surfaces of alkylketene dimer. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2008 , 316, 258-265	5.1	22
104	Triethylamine as an initiator for cracking of heptane. <i>Energy</i> , 2006 , 31, 2773-2790	7.9	22
103	Density and Refractive Index at 298.15 K and Vaporliquid Equilibria at 101.3 kPa for Four Binary Systems of Methanol, n-Propanol, n-Butanol, or Isobutanol with N-Methylpiperazine. <i>Journal of Chemical & Data</i> , 2002, 47, 811-815	2.8	22
102	A supramolecularly tunable chiral diphosphine ligand: application to Rh and Ir-catalyzed enantioselective hydrogenation. <i>Chemical Science</i> , 2016 , 7, 4594-4599	9.4	22
101	Interfacial Tensions for System of n-Heptane + Water with Quaternary Ammonium Surfactants and Additives of NaCl or C2124 Alcohols. <i>Journal of Chemical & Data</i> , 2014, 59, 860-868	2.8	21
100	A DFT Study on Palladium and Nickel-Catalyzed Regioselective and Stereoselective Hydrosilylation of 1,3-Disubstituted Allenes. <i>Organometallics</i> , 2017 , 36, 3371-3381	3.8	21
99	Densities, Viscosities, and Refractive Indices of Binary Mixtures of 1,2,3,4-Tetrahydronaphthalene with Some n-Alkanes at T = (293.15 to 313.15) K. <i>Journal of Chemical & Engineering Data</i> , 2012 , 57, 3278-3282	2.8	21
98	Tributylamine as an initiator for cracking of heptane. <i>Energy Conversion and Management</i> , 2008 , 49, 158	4r10 5 594	1 20
97	Duo of (-)-epigallocatechin-3-gallate and doxorubicin loaded by polydopamine coating ZIF-8 in the regulation of autophagy for chemo-photothermal synergistic therapy. <i>Biomaterials Science</i> , 2020 , 8, 138	3 0-1 39	3 ²⁰
96	Densities and Viscosities of Binary Mixtures of 2-Ethyl-1,1,3,3-tetramethylguanidinium Ionic Liquids with Ethanol and 1-Propanol. <i>Journal of Chemical & Engineering Data</i> , 2015 , 60, 2618-2628	2.8	19

95	Unfolding of human serum albumin by gemini and single-chain surfactants: A comparative study. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2016 , 495, 30-38	5.1	19
94	Densities, viscosities and refractive indices of binary liquid mixtures of methyl tert-butyl ether or ethyl tert-butyl ether with a hydrocarbon fuel. <i>Experimental Thermal and Fluid Science</i> , 2013 , 48, 163-16	58 ³	19
93	Density, Viscosity, and Vapor Pressure for Binary Mixtures of Tricyclo [5.2.1.02.6] Decane and Diethyl Carbonate. <i>Journal of Chemical & Diethyl Carbonate</i> , 54, 1865-1870	2.8	19
92	Mechanism and Substrate-Dependent Rate-Determining Step in Palladium-Catalyzed Intramolecular Decarboxylative Coupling of Arenecarboxylic Acids with Aryl Bromides: A DFT Study. <i>Organometallics</i> , 2013 , 32, 6957-6968	3.8	18
91	Densities and Viscosities of exo-Tetrahydrodicyclopentadiene + n-Butanol and exo-Tetrahydrodicyclopentadiene + n-Pentanol at Temperatures of (293.15 to 313.15) K. <i>Journal of Chemical & C</i>	2.8	18
90	Density and Refractive Index at 298.15 K and Vaporliquid Equilibria at 101.3 kPa for Binary Mixtures of Ethanol + N-Methylpiperazine. <i>Journal of Chemical & Data</i> , 2001, 46, 596-6	50 0 .8	18
89	New progress in theoretical studies on palladium-catalyzed CII bond-forming reaction mechanisms. <i>Science China Chemistry</i> , 2016 , 59, 1432-1447	7.9	17
88	Thermal Decomposition Kinetics and Mechanism of 1,1?-Bicyclohexyl. <i>Energy & amp; Fuels</i> , 2014 , 28, 45.	23 _{‡:} 453	1 17
87	Hyperbranched Poly(amidoamine) as an Efficient Macroinitiator for Thermal Cracking and Heat-Sink Enhancement of Hydrocarbon Fuels. <i>Energy & Enhancement of Hydrocarbon Fuels</i> . <i>Energy & Enhancement of Hydrocarbon Fuels</i> .	4.1	17
86	Density, Viscosity, Refractive Index, and Freezing Point for Binary Mixtures of 1,1?-Bicyclohexyl with Alkylcyclohexane. <i>Journal of Chemical & Engineering Data</i> , 2014 , 59, 2499-2504	2.8	16
85	A synergistic optical strategy for enhanced deep-tumor penetration and therapy in the second near-infrared window. <i>Materials Horizons</i> , 2020 , 7, 2929-2935	14.4	16
84	The regulation of sodium alginate on the stability of ovalbumin-pectin complexes for VD encapsulation and in vitro simulated gastrointestinal digestion study. <i>Food Research International</i> , 2021 , 140, 110011	7	16
83	Density, Viscosity, and Freezing Point for Four Binary Systems of n-Dodecane or Methylcyclohexane Mixed with 1-Heptanol or Cyclohexylmethanol. <i>Journal of Chemical & Data, 2017</i> , 62, 643-652	2.8	15
82	Resorcinarene-encapsulated Ni B nano-amorphous alloys for quasi-homogeneous catalytic cracking of JP-10. <i>Applied Catalysis A: General</i> , 2014 , 469, 213-220	5.1	15
81	Thermal Stability and Decomposition Kinetics of 1,3-Dimethyladamantane. <i>Energy & amp; Fuels</i> , 2014 , 28, 6210-6220	4.1	15
80	Density and Refractive Index at 298.15 K and Vaporliquid Equilibria at 101.3 kPa for Binary Mixtures of Water +N-Ethylpiperazine. <i>Journal of Chemical & Engineering Data</i> , 2000 , 45, 288-291	2.8	15
79	Heat transfer and cracking performance of endothermic hydrocarbon fuel when it cools a high temperature channel. <i>Fuel Processing Technology</i> , 2016 , 149, 112-120	7.2	15
78	Palladium nanoparticles induce autophagy and autophagic flux blockade in Hela cells. <i>RSC Advances</i> , 2018 , 8, 4130-4141	3.7	13

77	Stability and Thermal Conductivity Enhancement of Silver Nanofluids with Gemini Surfactants. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 12369-12375	3.9	12
76	Thermal cracking of jet propellant-10 with the addition of a core-shell macroinitiator. <i>Fuel</i> , 2019 , 254, 115667	7.1	12
75	Investigations on the thermal decomposition of JP-10/iso-octane binary mixtures. Fuel, 2016, 163, 148-	15.6	12
74	Thermal stability characterization of n-alkanes from determination of produced aromatics. <i>Journal of Analytical and Applied Pyrolysis</i> , 2013 , 104, 593-602	6	12
73	Explore the Catalytic Reaction Mechanism in the Reduction of NO by CO on the Rh7+ Cluster: A Quantum Chemical Study. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 7776-7781	3.8	12
72	Measurement of Bubble-Point Vapor Pressure for Systems of JP-10 with Ethanol. <i>Energy & amp; Fuels</i> , 2007 , 21, 1048-1051	4.1	12
71	Why different ligands can control stereochemistry selectivity of Ni-catalyzed Suzuki-Miyaura cross-coupling of benzylic carbamates with arylboronic esters: a mechanistic study. <i>Dalton Transactions</i> , 2017 , 46, 13010-13019	4.3	11
70	Volumetric and Viscous Properties at Several Temperatures for Binary Mixtures of N-Methylpiperazine with Methylcyclohexane or n-Heptane. <i>Journal of Chemical & Data</i> , 2010 , 55, 2914-2916	2.8	11
69	Strategically designed macromolecules as additives for high energy-density hydrocarbon fuels. <i>Fuel</i> , 2020 , 270, 117433	7.1	10
68	A DFT study on palladium-catalyzed decarboxylative intramolecular aziridination reaction mechanism. <i>Journal of Organometallic Chemistry</i> , 2013 , 745-746, 417-422	2.3	10
67	Triazenyl Alkynes as Versatile Building Blocks in Multicomponent Reactions: Diastereoselective Synthesis of EAmino Amides. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 5147-5151	16.4	10
66	New Strategy for High-Performance Integrated Catalysts for Cracking Hydrocarbon Fuels. <i>ACS Applied Materials & District Applied Materials & District Applied Materials & District Applied Materials & District Access and Distric</i>	9.5	9
65	Intracellular and Cellular Detection by SERS-Active Plasmonic Nanostructures. <i>ChemBioChem</i> , 2019 , 20, 2432-2441	3.8	9
64	Density, Viscosity, and Refractive Index for Binary Mixtures of Three Adamantane Derivatives with n-Nonane or n-Undecane at T = 293.15B43.15 K and Atmospheric Pressure. <i>Journal of Chemical & Chemical Ramp; Engineering Data</i> , 2020 , 65, 2512-2526	2.8	9
63	Modified Hyperbranched Polyglycerol as Dispersant for Size Control and Stabilization of Gold Nanoparticles in Hydrocarbons. <i>Nanoscale Research Letters</i> , 2017 , 12, 525	5	9
62	Influence of Reduction Kinetics on the Preparation of Well-Defined Cubic Palladium Nanocrystals. <i>Inorganic Chemistry</i> , 2018 , 57, 8128-8136	5.1	9
61	Conformational isomerism influence on the properties of piperazinium bis(trifluoromethylsulfonyl)imide. <i>Journal of Physical Chemistry B</i> , 2014 , 118, 9085-95	3.4	9
60	Densities and Viscosities for the Ternary System of Cyclopropanemethanol (1) + n-Dodecane (2) + Butylcyclohexane (3) and Corresponding Binaries at T = 293.15B43.15 K. <i>Journal of Chemical & Engineering Data</i> , 2017 , 62, 2330-2339	2.8	9

59	Dehydrogenation of benzyl alcohol with NO as the hydrogen acceptor catalyzed by the rhodium(i) carbene complex: insights from quantum chemistry calculations. <i>Dalton Transactions</i> , 2016 , 45, 16485-1	6431	9
58	Densities and Viscosities of Ternary System n-Dodecane (1) + Bicyclohexyl (2) + n-Butanol (3) and Corresponding Binaries at T = (293.15 to 333.15) K. <i>Journal of Chemical & Company Engineering Data</i> , 2018 , 63, 4052-4060	2.8	9
57	Solubilization of the macroinitiator palmitoyl modified hyperbranched polyglycerol (PHPG) in hydrocarbon fuels. <i>Fuel</i> , 2017 , 200, 62-69	7.1	8
56	Cracking of platinum/hydrocarbon nanofluids with hyperbranched polymer as stabilizer and initiator. <i>Fuel</i> , 2019 , 255, 115782	7.1	8
55	A DFT study on the mechanisms of hydrogenation and hydrosilylation of nitrous oxide catalyzed by a ruthenium PNP pincer complex. <i>Computational and Theoretical Chemistry</i> , 2018 , 1128, 48-55	2	8
54	Thermodynamic properties and pyrolysis performances of hydrocarbon-fuel-based nanofluids containing palladium nanoparticles. <i>Journal of Analytical and Applied Pyrolysis</i> , 2016 , 120, 347-355	6	8
53	Theoretical studies on the reductive elimination reaction mechanism from neutral palladium(IV) sulfinate complexes. <i>Journal of Physical Organic Chemistry</i> , 2013 , 26, 933-938	2.1	8
52	Effects of fractal surface on C6 glioma cell morphogenesis and differentiation in vitro. <i>Biomaterials</i> , 2010 , 31, 6201-6	15.6	8
51	Phase behaviors and curcumin encapsulation performance of Gemini surfactant microemulsion. Journal of Molecular Liquids, 2020 , 315, 113786	6	8
50	Deep insights into the growth pattern of palladium nanocubes with controllable sizes. <i>RSC Advances</i> , 2016 , 6, 66048-66055	3.7	8
49	DFT studies on mechanistic origins of ligand-controlled selectivity in Pd-catalyzed non-decarbonylative and decarbonylative reductive conversion of acyl fluoride. <i>Dalton Transactions</i> , 2019 , 48, 3440-3446	4.3	7
48	Highly stable macroinitiator/platinum/hydrocarbon nanofluids for efficient thermal management in hypersonic aircraft from synergistic catalysis. <i>Energy Conversion and Management</i> , 2019 , 198, 111797	10.6	7
47	Phase property, composition and temperature-induced phase inversion of ATPS-C formed by aqueous cationic surfactant mixtures. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2013 , 436, 193-200	5.1	7
46	Formation of Novel Aqueous Two-Phase Systems with Piperazinium-Based Ionic Liquids and Anionic Surfactants: Phase Behavior and Microstructure. <i>Journal of Physical Chemistry B</i> , 2015 , 119, 11798-806	3.4	7
45	Measurements on Vapor Pressure and Thermal Conductivity for Pseudo-binary Systems of a Hydrocarbon Fuel with Ethylene and Diethylene Glycol Dimethyl Ethers. <i>Energy & Dimethyl </i>	4.1	7
44	Amphiphilic hyperbranched polyethyleneimine for highly efficient oilWater separation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 2412-2423	13	7
43	Density and Viscosity of Ternary Mixture of Cyclopentanol + exo-Tetrahydrodicyclopentadiene + 1,3-Dimethyladamantane. <i>Journal of Chemical & Engineering Data</i> , 2019 , 64, 2558-2567	2.8	6
42	Densities and Viscosities for the Ternary System of Decalin + Methylcyclohexane + Cyclopentanol and Corresponding Binaries at T = 293.15 to 343.15 K. <i>Journal of Chemical & Chemical & Corporation Data</i> , 2019 , 64, 1414-1424	2.8	6

41	Density and Viscosity Measurements on the Ternary System of exo-Tetrahydrodicyclopentadiene (1) + n-Decane (2) + Iso-Butanol (3) and Corresponding Binary Systems. <i>Journal of Chemical & Engineering Data</i> , 2020 , 65, 2527-2539	2.8	6
40	Hyperbranched polyglycerol/poly(acrylic acid) hydrogel for the efficient removal of methyl violet from aqueous solutions. <i>Journal of Applied Polymer Science</i> , 2016 , 133, n/a-n/a	2.9	6
39	Reaction Mechanisms of a Tungsten Germylyne Complex with One or Two Molecules of Alcohols and Arylaldehydes: A DFT Study. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 1502-1511	2.3	6
38	Kinetics on formation of super water repellent surfaces from phase transformation in binary mixtures of trimyristin and tripalmitin. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2012 , 396, 130-136	5.1	6
37	Density, viscosity and electrical conductivity of alcohol solutions of 2,2-diethyl-1,1,3,3-tetramethylguanidinium bis(trifluoromethylsulfonyl)imide. <i>Journal of Chemical Thermodynamics</i> , 2020 , 151, 106241	2.9	5
36	Oxidation of phenyl and hydride ligands of bis(pentamethylcyclopentadienyl)hafnium derivatives by nitrous oxide via selective oxygen atom transfer reactions: insights from quantum chemistry calculations. <i>Dalton Transactions</i> , 2016 , 45, 1152-9	4.3	5
35	Densities and viscosities for the ternary system of cyclopropanemethanol (1) + 2, 2, 4-trimethylpentane (2) + decalin (3) and corresponding binaries at T = 293.15B23.15 K. <i>Physics and Chemistry of Liquids</i> , 2019 , 57, 491-503	1.5	5
34	Oxygenolysis reaction mechanism of copper-dependent quercetin 2,3-dioxygenase: A density functional theory study. <i>Science China Chemistry</i> , 2012 , 55, 1832-1841	7.9	5
33	Densities and Viscosities for the Ternary System of 1,2,3,4-Tetrahydronaphthalene + Isopropylcyclohexane + Cyclopropanemethanol and Corresponding Binaries at T = (293.15 to 343.15) K. <i>Journal of Chemical & Data</i> , Engineering Data, 2018,	2.8	5
32	Cisplatin combination drugs induce autophagy in HeLa cells and interact with HSA via electrostatic binding affinity. <i>RSC Advances</i> , 2017 , 7, 22270-22279	3.7	4
31	The reactivity of coordinatively unsaturated iridium methylene complex Ir CH2[N(SiMe2CH2PPh2)2]: A quantum chemistry study. <i>Computational and Theoretical Chemistry</i> , 2018 , 1138, 91-98	2	4
30	Densities and Viscosities for the Ternary Mixtures of exo-Tetrahydrodicyclopentadiene (1) + Isopropylcyclohexane (2) + Methyl Laurate (3) and Corresponding Binaries. <i>Journal of Chemical & Mamp; Engineering Data</i> , 2019 , 64, 4013-4023	2.8	4
29	Exploring the reaction mechanism of a cationic terminal iridium methylene complex with ethyl diazoacetate, a Lewis base and dihydrogen: a quantum chemistry study. <i>New Journal of Chemistry</i> , 2014 , 38, 4115	3.6	4
28	Nanoengineered on-demand drug delivery system improves efficacy of pharmacotherapy for epilepsy <i>Science Advances</i> , 2022 , 8, eabm3381	14.3	4
27	Densities and Viscosities for the Ternary System of Isopropylcyclohexane (1) + n-Tridecane (2) + n-Butanol (3) and Corresponding Binaries at T = 293.15 to 333.15 K. <i>Journal of Chemical & Engineering Data</i> , 2020 , 65, 3977-3987	2.8	4
26	Density and Viscosity of the Ternary System Pinane + n-Dodecane + Methyl Laurate and Corresponding Binary Systems at T = 293.15B33.15 K. <i>Journal of Chemical & Data</i> , 2021, 66, 2706-2716	2.8	4
25	A polyester-based initiation strategy for achieving high-efficient cracking of hydrocarbon fuels. <i>Chemical Engineering Journal</i> , 2021 , 425, 128059	14.7	4
24	Non-innocent PNN ligand is important for CO oxidation by NO catalyzed by a (PNN)Ru-H pincer complex: insights from DFT calculations. <i>Dalton Transactions</i> , 2018 , 47, 15324-15330	4.3	4

23	Theoretically exploring the key role of the Lys412 residue in the conversion of N2O to N2 by nitrous oxide reductase from Achromobacter cycloclastes. <i>New Journal of Chemistry</i> , 2015 , 39, 8093-80	9 3 .6	3
22	Pd-catalyzed bicyclization of 2-alkynylhalobenzenes and propargylic alcohols for the formation of indeno[1,2]furans: a DFT study. <i>Journal of Physical Organic Chemistry</i> , 2014 , 27, 237-244	2.1	3
21	Control of Reduction Kinetics to Form Palladium Nanocubes Enables Tunable Concavity. <i>Chemistry of Materials</i> , 2020 , 32, 4591-4599	9.6	3
20	Improved Stability and Targeted Cytotoxicity of Epigallocatechin-3-Gallate Palmitate for Anticancer Therapy. <i>Langmuir</i> , 2021 , 37, 969-977	4	3
19	Fabrication and characterization of oil-in-water pickering emulsions stabilized by ZEIN-HTCC nanoparticles as a composite layer. <i>Food Research International</i> , 2021 , 148, 110606	7	3
18	Understanding hydrogenation of the adenine-thymine base pairs and their anions: A density functional study. <i>International Journal of Quantum Chemistry</i> , 2012 , 112, 609-618	2.1	2
17	Thermal Conductivity and Stability of Hydrocarbon-Based Nanofluids with Palladium Nanoparticles Dispersed by Modified Hyperbranched Polyglycerol. <i>ACS Omega</i> , 2020 , 5, 31156-31163	3.9	2
16	Densities and Viscosities of the Ternary System exo-Tetrahydrodicyclopentadiene (1) + n-Decane (2) + 1,2,3,4-Tetrahydronaphthalene (3) and the Corresponding Binary Systems at T = (293.15B33.15) K. <i>Journal of Chemical & Data</i> , Engineering Data, 2021, 66, 1665-1675	2.8	2
15	Hyperbranched poly(amidoamine) as an efficient macroinitiator for steam cracking of naphtha. <i>Fuel</i> , 2021 , 299, 120907	7.1	2
14	Hydrophobic fractal surface from glycerol tripalmitate and the effects on C6 glioma cell growth. <i>Colloids and Surfaces B: Biointerfaces</i> , 2016 , 142, 377-384	6	1
13	Volumetric Properties and Viscosity B-Coefficients for the Ternary Systems Epigallocatechin Gallate + MCl + H2O (M = Li, Na, K) at Temperatures 288.15B08.15 K. <i>Journal of Chemical & Engineering Data</i> , 2016 , 61, 1777-1792	2.8	1
12	Densities and Viscosities for the Ternary System of exo-Tetrahydrodicyclopentadiene (1) + Methylcyclohexane (2) + Cyclopropanemethanol (3) and Its Binaries at T = 293.15 to 333.15 K. <i>Journal of Chemical & Data</i> , 2018, 63, 3534-3544	2.8	1
11	A combined experimental and theoretical study on the structures, interactions and volumetric properties of guanidinium-based ionic liquid mixtures. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 17720-17728	3.6	1
10	A substrate-dependent mechanism for the reactions of a hydrido(hydrosilylene)ruthenium complex with carbonyl compounds: insights from quantum chemical calculations. <i>New Journal of Chemistry</i> , 2017 , 41, 198-203	3.6	1
9	The pyrolysis kinetics and heat exchange performance of biomass hydrocarbon pinane. <i>Fuel</i> , 2022 , 317, 123453	7.1	1
8	All-Silicon Zeolite Supported Pt Nanoparticles for Green On-Board Inert Gas Generation System. <i>Combustion Science and Technology</i> , 2021 , 193, 2009-2022	1.5	1
7	A sulfur-rich segmental hyperbranched polymer as a coking inhibitor for endothermic hydrocarbon fuels. <i>Fuel</i> , 2021 , 287, 119477	7.1	1
6	Preparation of zein-lecithin-EGCG complex nanoparticles stabilized peppermint oil emulsions: Physicochemical properties, stability and intelligent sensory analysis <i>Food Chemistry</i> , 2022 , 383, 13245	3 ^{8.5}	O

5	Unveiling the Influence of Inherent Parameters of AgPt and AgPtAu Octahedra upon Formic Acid Electrooxidation. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 16984-16994	3.8	О
4	Mechanistic study on oxidative degradation and deposition of exo-tetrahydrodicyclopentadiene. <i>Fuel</i> , 2022 , 317, 123533	7.1	O
3	N-Insertion reaction mechanisms of phenyl azides with a hafnium hydride complex: a quantum chemistry calculation. <i>New Journal of Chemistry</i> , 2017 , 41, 5007-5011	3.6	
2	Thermal Conductivity and Stability of Hydrocarbon-Based Nanofluids with Palladium Nanoparticles Dispersed by Modified Hyperbranched Polyglycerol. <i>ACS Omega</i> , 2020 , 5, 31156-31163	3.9	

Thermal decomposition behaviors of an amphiphilic macroinitiator DSHPG for hydrocarbon fuel. Chemical Thermodynamics and Thermal Analysis, 2022, 6, 100047