
Martin Macek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5081273/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Forest microclimate dynamics drive plant responses to warming. Science, 2020, 368, 772-775.	12.6	385
2	Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Global Change Biology, 2015, 21, 3726-3737.	9.5	124
3	SoilTemp: A global database of nearâ€surface temperature. Global Change Biology, 2020, 26, 6616-6629.	9.5	122
4	Climate at ecologically relevant scales: A new temperature and soil moisture logger for long-term microclimate measurement. Agricultural and Forest Meteorology, 2019, 268, 40-47.	4.8	116
5	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	9.5	113
6	Topographic Wetness Index calculation guidelines based on measured soil moisture and plant species composition. Science of the Total Environment, 2021, 757, 143785.	8.0	106
7	The origin of grasslands in the temperate forest zone of east-central Europe: long-term legacy of climate and human impact. Quaternary Science Reviews, 2015, 116, 15-27.	3.0	104
8	Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Scientific Reports, 2016, 6, 24881.	3.3	103
9	Combining Biodiversity Resurveys across Regions to Advance Global Change Research. BioScience, 2017, 67, 73-83.	4.9	89
10	Vegetation resurvey is robust to plot location uncertainty. Diversity and Distributions, 2015, 21, 322-330.	4.1	80
11	Poleward migration of the destructive effects of tropical cyclones during the 20th century. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11543-11548.	7.1	71
12	Replacements of small- by large-ranged species scale up to diversity loss in Europe's temperate forest biome. Nature Ecology and Evolution, 2020, 4, 802-808.	7.8	67
13	ForestTemp – Subâ€canopy microclimate temperatures of European forests. Global Change Biology, 2021, 27, 6307-6319.	9.5	57
14	Observer and relocation errors matter in resurveys of historical vegetation plots. Journal of Vegetation Science, 2018, 29, 812-823.	2.2	51
15	Light availability and landâ€use history drive biodiversity and functional changes in forest herb layer communities. Journal of Ecology, 2020, 108, 1411-1425.	4.0	49
16	Maximum air temperature controlled by landscape topography affects plant species composition in temperate forests. Landscape Ecology, 2019, 34, 2541-2556.	4.2	48
17	Temporal changes in the spatial distribution of carabid beetles around arable field-woodlot boundaries. Scientific Reports, 2019, 9, 8967.	3.3	42
18	Directional turnover towards largerâ€ranged plants over time and across habitats. Ecology Letters, 2022, 25, 466-482.	6.4	39

MARTIN MACEK

#	Article	IF	CITATIONS
19	Life and death of <i><scp>P</scp>icea abies</i> after barkâ€beetle outbreak: ecological processes driving seedling recruitment. Ecological Applications, 2017, 27, 156-167.	3.8	36
20	Niche asymmetry of vascular plants increases with elevation. Journal of Biogeography, 2017, 44, 1418-1425.	3.0	31
21	Climate warming drives Himalayan alpine plant growth and recruitment dynamics. Journal of Ecology, 2021, 109, 179-190.	4.0	28
22	Sink limitation of plant growth determines tree line in the arid Himalayas. Functional Ecology, 2019, 33, 553-565.	3.6	27
23	Gardening in the zone of death: an experimental assessment of the absolute elevation limit of vascular plants. Scientific Reports, 2016, 6, 24440.	3.3	26
24	Application of optical unmanned aerial vehicle-based imagery for the inventory of natural regeneration and standing deadwood in post-disturbed spruce forests. International Journal of Remote Sensing, 2018, 39, 5288-5309.	2.9	24
25	Evaluating structural and compositional canopy characteristics to predict the lightâ€demand signature of the forest understorey in mixed, semiâ€natural temperate forests. Applied Vegetation Science, 2021, 24, .	1.9	24
26	Small changes in species composition despite stand-replacing bark beetle outbreak in <i>Picea abies</i> mountain forests. Canadian Journal of Forest Research, 2015, 45, 1164-1171.	1.7	21
27	Temperature buffering in temperate forests: Comparing microclimate models based on ground measurements with active and passive remote sensing. Remote Sensing of Environment, 2021, 263, 112522.	11.0	21
28	Population and forest dynamics during the Central European Eneolithic (4500–2000 BC). Archaeological and Anthropological Sciences, 2018, 10, 1153-1164.	1.8	17
29	Functionally distinct assembly of vascular plants colonizing alpine cushions suggests their vulnerability to climate change. Annals of Botany, 2019, 123, 569-578.	2.9	17
30	Plant'sâ€eye view of temperature governs elevational distributions. Global Change Biology, 2020, 26, 4094-4103.	9.5	17
31	Spatio-Temporal Modelling As A Way to Reconstruct Patterns of Past Human Activities. Archaeometry, 2016, 58, 513-528.	1.3	16
32	Contrasting biomass allocation responses across ontogeny and stress gradients reveal plant adaptations to drought and cold. Functional Ecology, 2021, 35, 32-42.	3.6	16
33	Legacy of historical litter raking in temperate forest plant communities. Journal of Vegetation Science, 2018, 29, 596-606.	2.2	15
34	Can high-resolution topography and forest canopy structure substitute microclimate measurements? Bryophytes say no. Science of the Total Environment, 2022, 821, 153377.	8.0	15
35	Responses of competitive understorey species to spatial environmental gradients inaccurately explain temporal changes. Basic and Applied Ecology, 2018, 30, 52-64.	2.7	11
36	The Taraxacum Flora of Ladakh, with notes on the adjacent regions of the West Himalaya . Phytotaxa, 2020, 457, 1-409.	0.3	9

MARTIN MACEK

#	Article	IF	CITATIONS
37	Plant diversity in deciduous temperate forests reflects interplay among ancient and recent environmental stress. Journal of Vegetation Science, 2020, 31, 53-62.	2.2	7
38	Elevational range size patterns of vascular plants in the Himalaya contradict Rapoport's rule. Journal of Ecology, 2021, 109, 4025-4037.	4.0	7
39	More than trees: The challenges of creating a geodatabase to capture the complexity of forest history. Historical Methods, 2018, 51, 175-189.	1.5	6
40	Thermal differences between juveniles and adults increased over time in European forest trees. Journal of Ecology, 2021, 109, 3944-3957.	4.0	4
41	Midpoint attractor models resolve the midâ€elevation peak in Himalayan plant species richness. Ecography, 2021, 44, 1665-1677.	4.5	4
42	Response to Comment on "Forest microclimate dynamics drive plant responses to warming― Science, 2020, 370, .	12.6	3
43	LONGWOOD: integrating woodland history and ecology in a geodatabase through an interdisciplinary approach. , 2013, 8795, .		1
44	Response to Comment on "Forest microclimate dynamics drive plant responses to warming― Science, 2020, 370, .	12.6	1
45	Using archaeology for population estimates and land use reconstructions: a perspective from Central Europe. Past Global Change Magazine, 2018, 26, 30-31.	0.1	1