List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5081269/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanistic aspects of facet-dependent CH4/C2+ selectivity over a χ-Fe5C2 Fischer–Tropsch catalyst. Green Energy and Environment, 2022, 7, 449-456.	4.7	8
2	Insights into the confinement effect on isobutane alkylation with C4 olefin catalyzed by zeolite catalyst: A combined theoretical and experimental study. Chinese Journal of Chemical Engineering, 2022, 47, 174-184.	1.7	7
3	Microkinetic model validation for Fischer-Tropsch synthesis at methanation conditions based on steady state isotopic transient kinetic analysis. Journal of Industrial and Engineering Chemistry, 2022, 105, 191-209.	2.9	8
4	Promotional effects of sodium and sulfur on light olefins synthesis from syngas over iron-manganese catalyst. Applied Catalysis B: Environmental, 2022, 300, 120716.	10.8	14
5	On the ensemble requirement of fully selective chemical looping methane partial oxidation over La-Fe-based perovskites. Applied Catalysis B: Environmental, 2022, 301, 120788.	10.8	34
6	Dual Role of Pyridinic-N Doping in Carbon-Coated Ni Nanoparticles for Highly Efficient Electrochemical CO ₂ Reduction to CO over a Wide Potential Range. ACS Catalysis, 2022, 12, 1364-1374.	5.5	73
7	Molecularâ€Level Insights into the Notorious CO Poisoning of Platinum Catalyst. Angewandte Chemie - International Edition, 2022, 61, .	7.2	30
8	PO ₄ ^{3â^'} Coordinated Robust Singleâ€Atom Platinum Catalyst for Selective Polyol Oxidation**. Angewandte Chemie, 2022, 134, .	1.6	21
9	PO ₄ ^{3â^'} Coordinated Robust Singleâ€Atom Platinum Catalyst for Selective Polyol Oxidation**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	51
10	Computer-aided bimetallic catalyst screening for ester selective hydrogenation. Catalysis Science and Technology, 2022, 12, 2761-2765.	2.1	2
11	Taming Electrons in Pt/C Catalysts to Boost the Mesokinetics of Hydrogen Production. Engineering, 2022, 14, 124-133.	3.2	1
12	Effects of Support and CO ₂ on the Performances of Vanadium Oxide-Based Catalysts in Propane Dehydrogenation. ACS Catalysis, 2022, 12, 5736-5749.	5.5	14
13	A Mechanistic Study of Oxygen Replenishment of Reduced Perovskites in Chemical Looping Redox Reactions. Journal of Physical Chemistry C, 2022, 126, 7431-7445.	1.5	3
14	Enhanced catalytic performance of transition metal-doped Cr2O3 catalysts for propane dehydrogenation: A microkinetic modeling study. Chemical Engineering Journal, 2022, 446, 136913.	6.6	4
15	A new approach of kinetic modeling: Kinetically consistent energy profile and rate expression analysis. Chemical Engineering Journal, 2022, 444, 136685.	6.6	5
16	Kinetic insights into the effect of promoters on Co/Al2O3 for Fischer-Tropsch synthesis. Chemical Engineering Journal, 2022, 445, 136655.	6.6	13
17	One-step leap in achieving oil-to-chemicals by using a two-stage riser reactor: Molecular-level process model and multi-objective optimization strategy. Chemical Engineering Journal, 2022, 444, 136684.	6.6	23
18	Reactant adsorption modulation by Fe and K in Pt catalyst for highly effective CO preferential oxidation in practical conditions. Chemical Engineering Journal, 2022, 444, 136661.	6.6	13

#	Article	IF	CITATIONS
19	Facet-Induced Strong Metal Chlorideâ^'Support Interaction over CuCl ₂ /l³-Al ₂ O ₃ Catalyst to Enhance Ethylene Oxychlorination Performance. ACS Catalysis, 2022, 12, 8027-8037.	5.5	9
20	Probing the structure sensitivity of dimethyl oxalate partial hydrogenation over Ag nanoparticles: A combined experimental and microkinetic study. Chemical Engineering Science, 2022, 259, 117830.	1.9	9
21	Engineering Electronic Platinum–Carbon Support Interaction to Tame Carbon Monoxide Activation. Fundamental Research, 2022, , .	1.6	2
22	Engineering the efficient three-dimension hollow cubic carbon from vacuum residuum with enhanced mass transfer ability towards H2O2 production. Chinese Journal of Chemical Engineering, 2021, 38, 98-105.	1.7	1
23	Electrochemical syngas production from CO2 and water with CNT supported ZnO catalysts. Catalysis Today, 2021, 364, 172-181.	2.2	7
24	Effects of metal dusting relevant exposures of alloy 601 surfaces on carbon formation and oxide development. Catalysis Today, 2021, 369, 48-61.	2.2	8
25	Support effects of Cs/Al2O3 catalyzed aldol condensation of methyl acetate with formaldehyde. Catalysis Today, 2021, 365, 310-317.	2.2	27
26	Unleash electron transfer in C–H functionalization by mesoporous carbon-supported palladium interstitial catalysts. National Science Review, 2021, 8, nwaa126.	4.6	23
27	Development of polyethylenimine (PEI)-impregnated mesoporous carbon spheres for low-concentration CO2 capture. Catalysis Today, 2021, 369, 69-76.	2.2	20
28	Tailoring catalytic properties of V2O3 to propane dehydrogenation through single-atom doping: A DFT study. Catalysis Today, 2021, 368, 46-57.	2.2	29
29	Insight into the basic strength-dependent catalytic performance in aqueous phase oxidation of glyceric acid. Chemical Engineering Science, 2021, 230, 116191.	1.9	18
30	Boost oxygen reduction reaction performance by tuning the active sites in Fe-N-P-C catalysts. Journal of Energy Chemistry, 2021, 55, 572-579.	7.1	29
31	Understanding of K and Mg co-promoter effect in ethylene oxychlorination by operando UV–vis-NIR spectroscopy. Catalysis Today, 2021, 369, 227-234.	2.2	11
32	Kinetic modeling of dynamic changing active sites in a Mars-van Krevelen type reaction: Ethylene oxychlorination on K-doped CuCl2/Al2O3. Chemical Engineering Journal, 2021, 407, 128013.	6.6	9
33	Prediction and Tuning of the Defects in the Redox Catalysts: Ethylene Oxychlorination. ChemCatChem, 2021, 13, 221-226.	1.8	4
34	Engineering Pt-Mn2O3 interface to boost selective oxidation of ethylene glycol to glycolic acid. Applied Catalysis B: Environmental, 2021, 284, 119803.	10.8	40
35	The preparation of three-dimensional binder-free polyaniline/aligned carbon nanotube on flexible etched Al foil substrate as high-performance pseudocapacitive cathode for nonaqueous lithium-ion capacitor. Journal of Energy Storage, 2021, 33, 102165.	3.9	5
36	Reversing Titanium Oligomer Formation towards Highâ€Efficiency and Green Synthesis of Titaniumâ€Containing Molecular Sieves. Angewandte Chemie, 2021, 133, 3485-3490.	1.6	2

#	Article	IF	CITATIONS
37	Reversing Titanium Oligomer Formation towards Highâ€Efficiency and Green Synthesis of Titaniumâ€Containing Molecular Sieves. Angewandte Chemie - International Edition, 2021, 60, 3443-3448.	7.2	58
38	Producing glyceric acid from glycerol <i>via</i> integrating vacuum dividing wall columns: conceptual process design and techno-economic-environmental analysis. Green Chemistry, 2021, 23, 3664-3676.	4.6	24
39	Tandem Hydrodeoxygenation Catalyst System for Hydrocarbons Production from Simulated Bio-oil: Effect of C–C Coupling Catalysts. Industrial & Engineering Chemistry Research, 2021, 60, 2136-2143.	1.8	5
40	C–H bond activation in light alkanes: a theoretical perspective. Chemical Society Reviews, 2021, 50, 4299-4358.	18.7	144
41	Unraveling Enhanced Activity, Selectivity, and Coke Resistance of Pt–Ni Bimetallic Clusters in Dry Reforming. ACS Catalysis, 2021, 11, 2398-2411.	5.5	83
42	On the Redox Mechanism of Lowâ€Temperature NH ₃ â€5CR over Cuâ€CHA: A Combined Experimental and Theoretical Study of the Reduction Half Cycle. Angewandte Chemie, 2021, 133, 7273-7280.	1.6	15
43	On the Redox Mechanism of Lowâ€Temperature NH ₃ â€SCR over Cuâ€CHA: A Combined Experimental and Theoretical Study of the Reduction Half Cycle. Angewandte Chemie - International Edition, 2021, 60, 7197-7204.	7.2	77
44	Autothermal Gas-Phase Oxidative Dehydrogenation of Ethane to Ethylene at Atmospheric Pressure. Industrial & Engineering Chemistry Research, 2021, 60, 6784-6802.	1.8	5
45	Effects of alumina phases on the structure and performance of VOx/Al2O3 catalysts in non-oxidative propane dehydrogenation. Molecular Catalysis, 2021, 504, 111466.	1.0	12
46	Design and tailoring of advanced catalytic process for light alkanes upgrading. EcoMat, 2021, 3, e12095.	6.8	10
47	Rational Design of Single-Atom-Doped Ga ₂ O ₃ Catalysts for Propane Dehydrogenation: Breaking through Volcano Plot by Lewis Acid–Base Interactions. ACS Catalysis, 2021, 11, 5135-5147.	5.5	41
48	Mesoporogen-Free Strategy to Construct Hierarchical TS-1 in a Highly Concentrated System for Gas-Phase Propene Epoxidation with H ₂ and O ₂ . ACS Applied Materials & Interfaces, 2021, 13, 26134-26142.	4.0	22
49	Tailoring Facets of α-Mn ₂ O ₃ Microcrystalline Catalysts for Enhanced Selective Oxidation of Glycerol to Glycolic Acid. ACS Catalysis, 2021, 11, 6371-6383.	5.5	64
50	Engineering Ru atomic structures toward enhanced kinetics of hydrogen generation. Chemical Engineering Science, 2021, 235, 116507.	1.9	6
51	Regulating light olefins or aromatics production in ex-situ catalytic pyrolysis of biomass by engineering the structure of tin modified ZSM-5 catalyst. Bioresource Technology, 2021, 330, 124975.	4.8	25
52	Kinetics decoupling activity and selectivity of Pt nanocatalyst for enhanced glycerol oxidation performance. AICHE Journal, 2021, 67, e17339.	1.8	5
53	Hierarchical trimetallic Co-Ni-Fe oxides derived from core-shell structured metal-organic frameworks for highly efficient oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, 287, 119953.	10.8	175
54	Insights of the Dynamic Copper Active Sites in Ethylene Oxychlorination Studied by the Multivariate UV–vis–NIR Resolution Kinetic Approach. Industrial & Engineering Chemistry Research, 2021, 60, 9437-9447.	1.8	7

#	Article	IF	CITATIONS
55	Microscopic Insight to Nonlinear Voltage Dependence of Charge in Carbon-Ionic Liquid Supercapacitors. Energy Material Advances, 2021, 2021, .	4.7	7
56	Effects of Oxygen Vacancy and Pt Doping on the Catalytic Performance of <scp>CeO₂</scp> in Propane Dehydrogenation: A <scp>Firstâ€Principles</scp> Study. Chinese Journal of Chemistry, 2021, 39, 2391-2402.	2.6	13
57	High-Throughput Screening of Alloy Catalysts for Dry Methane Reforming. ACS Catalysis, 2021, 11, 8881-8894.	5.5	47
58	Glycolic Acid Production from Ethylene Glycol via Sustainable Biomass Energy: Integrated Conceptual Process Design and Comparative Techno-economic–Society–Environment Analysis. ACS Sustainable Chemistry and Engineering, 2021, 9, 10948-10962.	3.2	25
59	Partial positively charged Pt in Pt/MgAl2O4 for enhanced dehydrogenation activity. Applied Catalysis B: Environmental, 2021, 288, 119996.	10.8	44
60	Mechanism-guided elaboration of ternary Au–Ti–Si sites to boost propylene oxide formation. Chem Catalysis, 2021, 1, 885-895.	2.9	21
61	Rationally constructed Ti sites of TS-1 for epoxidation reactions. Science Bulletin, 2021, 66, 1945-1949.	4.3	19
62	Rational design of intermetallic compound catalysts for propane dehydrogenation from a descriptor-based microkinetic analysis. Journal of Catalysis, 2021, 404, 32-45.	3.1	15
63	Versatile One-Pot Tandem Conversion of Biomass-Derived Light Oxygenates into High-Yield Jet Fuel Range Aromatics. Industrial & Engineering Chemistry Research, 2021, 60, 15095-15105.	1.8	3
64	Polyphenylene Sulfideâ€Based Solidâ€State Separator for Limited Li Metal Battery. Small, 2021, 17, e2104365.	5.2	12
65	Molecular-level insights into the electronic effects in platinum-catalyzed carbon monoxide oxidation. Nature Communications, 2021, 12, 6888.	5.8	18
66	Descriptor-Based Microkinetic Modeling and Catalyst Screening for CO Hydrogenation. ACS Catalysis, 2021, 11, 14545-14560.	5.5	8
67	Tuning partially charged Pt ^{<i>δ</i>+} of atomically dispersed Pt catalysts toward superior propane dehydrogenation performance. Catalysis Science and Technology, 2021, 11, 7840-7843.	2.1	5
68	Structural stability of Lanthanum-based oxygen-deficient perovskites in redox catalysis: A density functional theory study. Catalysis Today, 2020, 347, 142-149.	2.2	18
69	Electrochemical reduction of CO2 to synthesis gas on CNT supported CuxZn1-x O catalysts. Catalysis Today, 2020, 357, 311-321.	2.2	22
70	Understanding effects of Ni particle size on steam methane reforming activity by combined experimental and theoretical analysis. Catalysis Today, 2020, 355, 139-147.	2.2	32
71	Propene epoxidation with H2 and O2 on Au/TS-1 catalyst: Cost-effective synthesis of small-sized mesoporous TS-1 and its unique performance. Catalysis Today, 2020, 347, 102-109.	2.2	29
72	Shape selectivity in acidic zeolite catalyzed 2-pentene skeletal isomerization from first principles. Catalysis Today, 2020, 347, 115-123.	2.2	7

#	Article	IF	CITATIONS
73	Uncalcined TSâ€2 immobilized Au nanoparticles as a bifunctional catalyst to boost direct propylene epoxidation with H ₂ and O ₂ . AICHE Journal, 2020, 66, e16815.	1.8	31
74	Active sites of Pt/CNTs nanocatalysts for aerobic base-free oxidation of glycerol. Green Energy and Environment, 2020, 5, 76-82.	4.7	22
75	High Peel Strength and Flexible Aligned Carbon Nanotubes/Etched Al Foil Composites with Boosted Supercapacitor and Thermal Dissipation Performances. Industrial & Engineering Chemistry Research, 2020, 59, 1549-1558.	1.8	3
76	Hydrogen dependence of the reaction mechanism and kinetics of water gas shift reaction on Ni catalyst: Experimental and DFT study. Applied Catalysis B: Environmental, 2020, 264, 118430.	10.8	32
77	Boosting gravimetric and volumetric energy density of supercapacitors by 3D pomegranate-like porous carbon structure design. Applied Surface Science, 2020, 534, 147613.	3.1	23
78	Size Dependence of Pt Catalysts for Propane Dehydrogenation: from Atomically Dispersed to Nanoparticles. ACS Catalysis, 2020, 10, 12932-12942.	5.5	144
79	Cu-Promoted Iron Catalysts Supported on Nanorod-Structured Mn-Ce Mixed Oxides for Higher Alcohol Synthesis from Syngas. Catalysts, 2020, 10, 1124.	1.6	7
80	Critical Review of Catalysis for Ethylene Oxychlorination. ACS Catalysis, 2020, 10, 9299-9319.	5.5	28
81	Enhancing the dynamic electron transfer of Au species on wormhole-like TS-1 for boosting propene epoxidation performance with H2 and O2. Green Energy and Environment, 2020, 5, 433-443.	4.7	28
82	Hydrogenation of CO to olefins over a supported iron catalyst on MgAl ₂ O ₄ spinel: effects of the spinel synthesis method. RSC Advances, 2020, 10, 40815-40829.	1.7	7
83	Beyond the Reverse Horiuti–Polanyi Mechanism in Propane Dehydrogenation over Pt Catalysts. ACS Catalysis, 2020, 10, 14887-14902.	5.5	44
84	Dense integration of solvent-free electrodes for Li-ion supercabattery with boosted low temperature performance. Journal of Power Sources, 2020, 473, 228553.	4.0	22
85	Nitrogenâ€Doped Carbonâ€Assisted Oneâ€pot Tandem Reaction for Vinyl Chloride Production via Ethylene Oxychlorination. Angewandte Chemie - International Edition, 2020, 59, 22080-22085.	7.2	18
86	Nitrogenâ€Doped Carbonâ€Assisted Oneâ€pot Tandem Reaction for Vinyl Chloride Production via Ethylene Oxychlorination. Angewandte Chemie, 2020, 132, 22264-22269.	1.6	3
87	Boosting the Utilization and Electrochemical Performances of Polyaniline by Forming a Binder-Free Nanoscale Coaxially Coated Polyaniline/Carbon Nanotube/Carbon Fiber Paper Hierarchical 3D Microstructure Composite as a Supercapacitor Electrode. ACS Omega, 2020, 5, 22119-22130.	1.6	9
88	Gold catalysts containing interstitial carbon atoms boost hydrogenation activity. Nature Communications, 2020, 11, 4600.	5.8	38
89	Atomic Insights into Robust Pt–PdO Interfacial Site-Boosted Hydrogen Generation. ACS Catalysis, 2020, 10, 11417-11429.	5.5	19
90	ldentification of Synergistic Actions between Cu ⁰ and Cu ⁺ Sites in Hydrogenation of Dimethyl Oxalate from Microkinetic Analysis. Industrial & Engineering Chemistry Research, 2020, 59, 22451-22459.	1.8	11

#	Article	IF	CITATIONS
91	Mechanism investigation and catalyst screening of high-temperature reverse water gas shift reaction. Green Chemical Engineering, 2020, 1, 131-139.	3.3	8
92	Engineering three-layer core–shell S-1/TS-1@dendritic-SiO2 supported Au catalysts towards improved performance for propene epoxidation with H2 and O2. Green Energy and Environment, 2020, 5, 473-483.	4.7	30
93	Cluster-Size-Dependent Interaction between Ethylene and CuCl ₂ Clusters Supported via γ-Alumina. Journal of Physical Chemistry C, 2020, 124, 10430-10440.	1.5	16
94	Rational screening of single-atom-doped ZnO catalysts for propane dehydrogenation from microkinetic analysis. Catalysis Science and Technology, 2020, 10, 4938-4951.	2.1	18
95	Effective Iron Catalysts Supported on Mixed MgO–Al ₂ O ₃ for Fischer–Tropsch Synthesis to Olefins. Industrial & Engineering Chemistry Research, 2020, 59, 11462-11474.	1.8	16
96	Boosting Specific Energy and Power of Carbon-Ionic Liquid Supercapacitors by Engineering Carbon Pore Structures. Frontiers in Chemistry, 2020, 8, 6.	1.8	5
97	Synergistic Pt-WO3 Dual Active Sites to Boost Hydrogen Production from Ammonia Borane. IScience, 2020, 23, 100922.	1.9	35
98	Tuning reactivity of Fischer–Tropsch synthesis by regulating TiOx overlayer over Ru/TiO2 nanocatalysts. Nature Communications, 2020, 11, 3185.	5.8	114
99	On the nature of Pt-carbon interactions for enhanced hydrogen generation. Journal of Catalysis, 2020, 389, 492-501.	3.1	17
100	Understanding the mechanism of CO2 reforming of methane to syngas on Ni@Pt surface compared with Ni(1Â1Â1) and Pt(1Â1Â1). Applied Surface Science, 2020, 513, 145840.	3.1	37
101	Exploring the Reaction Paths in the Consecutive Fe-Based FT Catalyst–Zeolite Process for Syngas Conversion. ACS Catalysis, 2020, 10, 3797-3806.	5.5	37
102	Insight into Size- and Metal-Dependent Activity and the Mechanism for Steam Methane Re-forming in Nanocatalysis. Journal of Physical Chemistry C, 2020, 124, 2501-2512.	1.5	19
103	Direct conversion of syngas to aromatics: A review of recent studies. Chinese Journal of Catalysis, 2020, 41, 561-573.	6.9	55
104	New mechanism insights into methane steam reforming on Pt/Ni from DFT and experimental kinetic study. Fuel, 2020, 266, 117143.	3.4	86
105	Effects of Oxygen Mobility in La–Fe-Based Perovskites on the Catalytic Activity and Selectivity of Methane Oxidation. ACS Catalysis, 2020, 10, 3707-3719.	5.5	132
106	The effect of co-feeding ethene on Fischer-Tropsch synthesis to olefins over Co-based catalysts. Applied Catalysis A: General, 2020, 598, 117564.	2.2	9
107	Origin of potassium promotion effects on CuCl2∫γ-Al2O3 catalyzed ethylene oxychlorination. Applied Surface Science, 2020, 521, 146310.	3.1	9
108	Polymer decoration of carbon support to boost Pt-catalyzed hydrogen generation activity and durability. Journal of Catalysis, 2020, 385, 289-299.	3.1	7

#	Article	IF	CITATIONS
109	Dualâ€function catalysis in propane dehydrogenation over <scp>Pt₁–Ga₂3</scp> catalyst: Insights from a microkinetic analysis. AICHE Journal, 2020, 66, e16232.	1.8	27
110	Methyl Methacrylate Synthesis: Thermodynamic Analysis for Oxidative Esterification of Methacrolein and Aldol Condensation of Methyl Acetate. Industrial & Engineering Chemistry Research, 2020, 59, 17408-17416.	1.8	17
111	Jet Fuel Range Hydrocarbon Production from Propanal: Mechanistic Insights into Active Site Requirement of a Dual-Bed Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 9434-9446.	3.2	5
112	Effect of oxide additives on the hydrotalcite derived Ni catalysts for CO2 reforming of methane. Chemical Engineering Journal, 2019, 377, 119763.	6.6	97
113	Towards rational catalyst design: boosting the rapid prediction of transition-metal activity by improved scaling relations. Physical Chemistry Chemical Physics, 2019, 21, 19269-19280.	1.3	29
114	Size-Dependent Segregation Preference in Single-Atom Alloys of Late Transition Metals: Effects of Magnetism, Electron Correlation, and Geometrical Strain. Journal of Physical Chemistry C, 2019, 123, 18417-18424.	1.5	8
115	Highly selective CO removal by sorption enhanced Boudouard reaction for hydrogen production. Catalysis Science and Technology, 2019, 9, 4100-4107.	2.1	15
116	Origin of Chemisorption Energy Scaling Relations over Perovskite Surfaces. Journal of Physical Chemistry C, 2019, 123, 28275-28283.	1.5	11
117	The role of H ₂ S addition on Pt/Al ₂ O ₃ catalyzed propane dehydrogenation: a mechanistic study. Catalysis Science and Technology, 2019, 9, 867-876.	2.1	21
118	Kinetics-assisted discrimination of active sites in Ru catalyzed hydrolytic dehydrogenation of ammonia borane. Reaction Chemistry and Engineering, 2019, 4, 316-322.	1.9	24
119	Methane Activation on Bimetallic Catalysts: Properties and Functions of Surface Niâ^'Ag Alloy. ChemCatChem, 2019, 11, 3401-3412.	1.8	16
120	Investigation of C1 + C1 Coupling Reactions in Cobalt-Catalyzed Fischer-Tropsch Synthesis by a Combined DFT and Kinetic Isotope Study. Catalysts, 2019, 9, 551.	1.6	15
121	Insights into Hydrogen Transport Behavior on Perovskite Surfaces: Transition from the Grotthuss Mechanism to the Vehicle Mechanism. Langmuir, 2019, 35, 9962-9969.	1.6	29
122	Tuning Adsorption and Catalytic Properties of α-Cr ₂ O ₃ and ZnO in Propane Dehydrogenation by Creating Oxygen Vacancy and Doping Single Pt Atom: A Comparative First-Principles Study. Industrial & Engineering Chemistry Research, 2019, 58, 10199-10209.	1.8	38
123	Surface phase diagrams of La-based perovskites towards the O-rich limit from first principles. Physical Chemistry Chemical Physics, 2019, 21, 12859-12871.	1.3	7
124	Boosting the electrochemical performance through proton transfer for the Zn-ion hybrid supercapacitor with both ionic liquid and organic electrolytes. Journal of Materials Chemistry A, 2019, 7, 9708-9715.	5.2	111
125	Atomically dispersed Fe-N-P-C complex electrocatalysts for superior oxygen reduction. Applied Catalysis B: Environmental, 2019, 249, 306-315.	10.8	85
126	BEEF-vdW+ <i>U</i> method applied to perovskites: thermodynamic, structural, electronic, and magnetic properties. Journal of Physics Condensed Matter, 2019, 31, 145901.	0.7	11

#	Article	IF	CITATIONS
127	Optimising surface d charge of AuPd nanoalloy catalysts for enhanced catalytic activity. Nature Communications, 2019, 10, 1428.	5.8	149
128	Reaction mechanism and kinetics for Pt/CNTs catalyzed base-free oxidation of glycerol. Chemical Engineering Science, 2019, 203, 228-236.	1.9	32
129	Promotional effect of in situ generated hydroxyl on olefin selectivity of Co-catalyzed Fischer–Tropsch synthesis. Physical Chemistry Chemical Physics, 2019, 21, 24441-24448.	1.3	6
130	Cost-efficient core-shell TS-1/silicalite-1 supported Au catalysts: Towards enhanced stability for propene epoxidation with H2 and O2. Chemical Engineering Journal, 2019, 377, 119927.	6.6	35
131	Electronic Origin of Oxygen Transport Behavior in La-Based Perovskites: A Density Functional Theory Study. Journal of Physical Chemistry C, 2019, 123, 275-290.	1.5	25
132	Sustainable and Atomically Dispersed Iron Electrocatalysts Derived from Nitrogen―and Phosphorusâ€Modified Woody Biomass for Efficient Oxygen Reduction. Advanced Materials Interfaces, 2019, 6, 1801623.	1.9	22
133	Enhanced stability for propene epoxidation with H2 and O2 over wormhole-like hierarchical TS-1 supported Au nanocatalyst. Chemical Engineering Journal, 2019, 377, 119954.	6.6	46
134	Effect of trace potassium on hydrogen adsorption and dissociation on hcp cobalt: A density functional theory study. Surface Science, 2019, 681, 24-31.	0.8	9
135	Kinetics Insights and Active Sites Discrimination of Pd-Catalyzed Selective Hydrogenation of Acetylene. Industrial & Engineering Chemistry Research, 2019, 58, 1888-1895.	1.8	34
136	A comprehensive kinetics study on non-isothermal pyrolysis of kerogen from Green River oil shale. Chemical Engineering Journal, 2019, 377, 120275.	6.6	46
137	Improved selectivity and coke resistance of core-shell alloy catalysts for propane dehydrogenation from first principles and microkinetic analysis. Chemical Engineering Journal, 2019, 377, 120049.	6.6	42
138	Charge-Tuned CO Activation over a χ-Fe ₅ C ₂ Fischer–Tropsch Catalyst. ACS Catalysis, 2018, 8, 2709-2714.	5.5	70
139	Ternary interfacial superstructure enabling extraordinary hydrogen evolution electrocatalysis. Materials Today, 2018, 21, 602-610.	8.3	48
140	Production of high pressure pure H2 by pressure swing sorption enhanced steam reforming (PS-SESR) of byproducts in biorefinery. Applied Energy, 2018, 222, 595-607.	5.1	10
141	Decoding Atomic-Level Structures of the Interface between Pt Sub-nanocrystals and Nanostructured Carbon. Journal of Physical Chemistry C, 2018, 122, 7166-7178.	1.5	4
142	Structural and kinetic insights into Pt/CNT catalysts during hydrogen generation from ammonia borane. Chemical Engineering Science, 2018, 192, 1242-1251.	1.9	31
143	Manipulating Gold Spatial Location on Titanium Silicalite-1 To Enhance the Catalytic Performance for Direct Propene Epoxidation with H ₂ and O ₂ . ACS Catalysis, 2018, 8, 10649-10657.	5.5	44
144	SbO _x â€promoted pt nanoparticles supported on CNTs as catalysts for baseâ€free oxidation of glycerol to dihydroxyacetone. AICHE Journal, 2018, 64, 3979-3987.	1.8	23

#	Article	IF	CITATIONS
145	Insights into the synergy between recyclable magnetic Fe3O4 and zeolite for catalytic aquathermolysis of heavy crude oil. Applied Surface Science, 2018, 456, 140-146.	3.1	36
146	Towards high activity of hydrogen production from ammonia borane over efficient non-noble Ni5P4 catalyst. International Journal of Hydrogen Energy, 2018, 43, 17112-17120.	3.8	22
147	Boosting Sizeâ€Selective Hydrogen Combustion in the Presence of Propene Using Controllable Metal Clusters Encapsulated in Zeolite. Angewandte Chemie, 2018, 130, 9918-9922.	1.6	4
148	Enhanced Catalytic Performance for Propene Epoxidation with H ₂ and O ₂ over Bimetallic Au–Ag/Uncalcined Titanium Silicate-1 Catalysts. ACS Catalysis, 2018, 8, 7799-7808.	5.5	94
149	Tailoring of Fe/MnK-CNTs Composite Catalysts for the Fischer–Tropsch Synthesis of Lower Olefins from Syngas. Industrial & Engineering Chemistry Research, 2018, 57, 11554-11560.	1.8	21
150	Boosting Size‧elective Hydrogen Combustion in the Presence of Propene Using Controllable Metal Clusters Encapsulated in Zeolite. Angewandte Chemie - International Edition, 2018, 57, 9770-9774.	7.2	34
151	Coke Formation on Pt–Sn/Al ₂ O ₃ Catalyst for Propane Dehydrogenation. Industrial & Engineering Chemistry Research, 2018, 57, 8647-8654.	1.8	106
152	Nitrogenâ€doped Carbon Nanofibers for the Oxygen Reduction Reaction: Importance of the Iron Growth Catalyst Phase. ChemCatChem, 2017, 9, 1663-1674.	1.8	17
153	Steam methane reforming on a Ni-based bimetallic catalyst: density functional theory and experimental studies of the catalytic consequence of surface alloying of Ni with Ag. Catalysis Science and Technology, 2017, 7, 1713-1725.	2.1	55
154	Simultaneously Enhanced Stability and Selectivity for Propene Epoxidation with H ₂ and O ₂ on Au Catalysts Supported on Nano-Crystalline Mesoporous TS-1. ACS Catalysis, 2017, 7, 2668-2675.	5.5	120
155	Porous carbon with small mesoporesas an ultra-high capacity adsorption medium. Applied Surface Science, 2017, 420, 535-541.	3.1	11
156	Enhancing capacitance of supercapacitor with both organic electrolyte and ionic liquid electrolyte on a biomass-derived carbon. RSC Advances, 2017, 7, 23859-23865.	1.7	87
157	Potassium adsorption behavior on hcp cobalt as model systems for the Fischer–Tropsch synthesis: a density functional theory study. Physical Chemistry Chemical Physics, 2017, 19, 12246-12254.	1.3	13
158	Understanding of potassium promoter effects on oxychlorination of ethylene by operando spatial-time resolved UV–vis–NIR spectrometry. Journal of Catalysis, 2017, 352, 218-228.	3.1	23
159	Adsorption energy-driven carbon number-dependent olefin to paraffin ratio in cobalt-catalyzed Fischer-Tropsch synthesis. Journal of Catalysis, 2017, 349, 110-117.	3.1	19
160	Selective Hydrogenation of Acetylene over Pd-In/Al ₂ O ₃ Catalyst: Promotional Effect of Indium and Composition-Dependent Performance. ACS Catalysis, 2017, 7, 7835-7846.	5.5	194
161	Decoding structural complexity in conical carbon nanofibers. Physical Chemistry Chemical Physics, 2017, 19, 14555-14565.	1.3	1
162	Tuning the Electronic Properties of Single-Atom Pt Catalysts by Functionalization of the Carbon Support Material. Journal of Physical Chemistry C, 2017, 121, 20802-20812.	1.5	23

#	Article	IF	CITATIONS
163	Selective Charging Behavior in an Ionic Mixture Electrolyte-Supercapacitor System for Higher Energy and Power. Journal of the American Chemical Society, 2017, 139, 18681-18687.	6.6	101
164	Mechanistic and kinetic insights into the Pt-Ru synergy during hydrogen generation from ammonia borane over PtRu/CNT nanocatalysts. Journal of Catalysis, 2017, 356, 186-196.	3.1	73
165	Novel Fe/MnKâ€CNTs nanocomposites as catalysts for direct production of lower olefins from syngas. AICHE Journal, 2017, 63, 154-161.	1.8	16
166	Reaction mechanism and kinetics for hydrolytic dehydrogenation of ammonia borane on a Pt/CNT catalyst. AICHE Journal, 2017, 63, 60-65.	1.8	90
167	Effect of operating conditions on the sorption enhanced steam reforming of blends of acetic acid and acetone as bio-oil model compounds. Applied Energy, 2016, 177, 579-590.	5.1	52
168	Composition of the Green Oil in Hydrogenation of Acetylene over a Commercial Pdâ€Ag/Al ₂ O ₃ Catalyst. Chemical Engineering and Technology, 2016, 39, 865-873.	0.9	39
169	Understanding Coâ€Mo Catalyzed Ammonia Decomposition: Influence of Calcination Atmosphere and Identification of Active Phase. ChemCatChem, 2016, 8, 938-945.	1.8	46
170	Insight into the side reactions in methanol-to-olefin process over HZSM-5: A kinetic study. Chemical Engineering Journal, 2016, 299, 263-275.	6.6	42
171	Size and Promoter Effects in Supported Iron Fischer–Tropsch Catalysts: Insights from Experiment and Theory. ACS Catalysis, 2016, 6, 3147-3157.	5.5	138
172	Thermal stability of TPA template and size-dependent selectivity of uncalcined TS-1 supportedÂAu catalyst for propene epoxidation with H ₂ and O ₂ . RSC Advances, 2016, 6, 44050-44056.	1.7	29
173	Highly Active and Stable CeO ₂ -Promoted CuCl ₂ /Al ₂ O ₃ Oxychlorination Catalysts Developed by Rational Design Using a Rate Diagram of the Catalytic Cycle. ACS Catalysis, 2016, 6, 7030-7039.	5.5	30
174	Boosting the Energy Density of 3D Dual-Manganese Oxides-Based Li-Ion Supercabattery by Controlled Mass Ratio and Charge Injection. Journal of the Electrochemical Society, 2016, 163, A2618-A2622.	1.3	10
175	Carbon Number Dependence of Reaction Mechanism and Kinetics in CO Hydrogenation on a Co-Based Catalyst. ACS Catalysis, 2016, 6, 6674-6686.	5.5	20
176	Iron-based Fischer–Tropsch synthesis of lower olefins: The nature of χ-Fe5C2 catalyst and why and how to introduce promoters. Journal of Energy Chemistry, 2016, 25, 911-916.	7.1	57
177	Boosted Supercapacitive Energy with High Rate Capability of aCarbon Framework with Hierarchical Pore Structure in an Ionic Liquid. ChemSusChem, 2016, 9, 3093-3101.	3.6	33
178	Au/TSâ€l catalyst for propene epoxidation with H ₂ /O ₂ : A novel strategy to enhance stability by tuning charging sequence. AICHE Journal, 2016, 62, 3963-3972.	1.8	35
179	On the superior activity and selectivity of PtCo/Nb2O5 Fischer Tropsch catalysts. Journal of Catalysis, 2016, 340, 270-275.	3.1	23
180	Influence of Carbon Support on Electronic Structure and Catalytic Activity of Pt Catalysts: Binding to the CO Molecule. Journal of Physical Chemistry C, 2016, 120, 12452-12462.	1.5	22

#	Article	IF	CITATIONS
181	A Single-Event MicroKinetic model for the cobalt catalyzed Fischer-Tropsch Synthesis. Applied Catalysis A: General, 2016, 524, 149-162.	2.2	14
182	Fabrication of K-promoted iron/carbon nanotubes composite catalysts for the Fischer–Tropsch synthesis of lower olefins. Journal of Energy Chemistry, 2016, 25, 311-317.	7.1	55
183	Insights into Activated Carbon-Supported Platinum Catalysts for Base-Free Oxidation of Glycerol. Industrial & Engineering Chemistry Research, 2016, 55, 420-427.	1.8	26
184	Geometrically confined favourable ion packing for high gravimetric capacitance in carbon–ionic liquid supercapacitors. Energy and Environmental Science, 2016, 9, 232-239.	15.6	109
185	Production of fuel-cell grade H2 by sorption enhanced steam reforming of acetic acid as a model compound of biomass-derived bio-oil. Applied Catalysis B: Environmental, 2016, 184, 64-76.	10.8	81
186	Nitrogen-doped carbon nanofibers on expanded graphite as oxygen reduction electrocatalysts. Carbon, 2016, 101, 191-202.	5.4	62
187	One-step electrochemical synthesis of tunable nitrogen-doped graphene. Journal of Materials Chemistry A, 2016, 4, 1233-1243.	5.2	69
188	Particle size effect for cobalt Fischer–Tropsch catalysts based on in situ CO chemisorption. Surface Science, 2016, 648, 67-73.	0.8	62
189	Liâ€Metalâ€Free Prelithiation of Siâ€Based Negative Electrodes for Full Liâ€Ion Batteries. ChemSusChem, 2015, 8, 2737-2744.	3.6	63
190	Carbon Nanotubes as Support in the Platinum atalyzed Hydrolytic Dehydrogenation of Ammonia Borane. ChemSusChem, 2015, 8, 2927-2931.	3.6	57
191	ZnO–Carbonâ€Nanotube Composite Supported Nickel Catalysts for Selective Conversion of Cellulose into Vicinal Diols. ChemCatChem, 2015, 7, 2991-2999.	1.8	19
192	Density Functional Theory-Assisted Microkinetic Analysis of Methane Dry Reforming on Ni Catalyst. Industrial & Engineering Chemistry Research, 2015, 54, 5901-5913.	1.8	158
193	Insights into the effects of steam on propane dehydrogenation over a Pt/Al ₂ O ₃ catalyst. Catalysis Science and Technology, 2015, 5, 3991-4000.	2.1	21
194	Modified carbon nanotubes by KMnO ₄ supported iron Fischer–Tropsch catalyst for the direct conversion of syngas to lower olefins. Journal of Materials Chemistry A, 2015, 3, 4560-4567.	5.2	57
195	Catalyst characterisation techniques and reaction cells operating at realistic conditions; towards acquisition of kinetically relevant information. Catalysis Science and Technology, 2015, 5, 4859-4883.	2.1	50
196	Recent advances in synthesis of reshaped Fe and Ni particles at the tips of carbon nanofibers and their catalytic applications. Catalysis Today, 2015, 249, 2-11.	2.2	21
197	Au/TS-1 catalyst prepared by deposition–precipitation method for propene epoxidation with H2/O2: Insights into the effects of slurry aging time and Si/Ti molar ratio. Journal of Catalysis, 2015, 325, 128-135.	3.1	51
198	Hierarchical structured α-Al ₂ O ₃ supported S-promoted Fe catalysts for direct conversion of syngas to lower olefins. Chemical Communications, 2015, 51, 8853-8856.	2.2	69

#	Article	IF	CITATIONS
199	Insights into HÃǥg Iron-Carbide-Catalyzed Fischer–Tropsch Synthesis: Suppression of CH ₄ Formation and Enhancement of C–C Coupling on χ-Fe ₅ C ₂ (510). ACS Catalysis, 2015, 5, 2203-2208.	5.5	122
200	Boosting Properties of 3D Binderâ€Free Manganese Oxide Anodes by Preformation of a Solid Electrolyte Interphase. ChemSusChem, 2015, 8, 1368-1380.	3.6	7
201	Insight into the Enhanced Selectivity of Phosphate-Modified Annealed Nanodiamond for Oxidative Dehydrogenation Reactions. ACS Catalysis, 2015, 5, 2436-2444.	5.5	58
202	Size-Dependent Reaction Mechanism and Kinetics for Propane Dehydrogenation over Pt Catalysts. ACS Catalysis, 2015, 5, 6310-6319.	5.5	189
203	Chemical Bonding and Electronic Properties of the Co Adatom and Dimer Interacting with Polyaromatic Hydrocarbons. Journal of Physical Chemistry C, 2015, 119, 24425-24438.	1.5	9
204	Aligned carbon nanostructures based 3D electrodes for energy storage. Journal of Energy Chemistry, 2015, 24, 559-586.	7.1	19
205	CaO Nanoparticles Coated by ZrO ₂ Layers for Enhanced CO ₂ Capture Stability. Industrial & Engineering Chemistry Research, 2015, 54, 8929-8939.	1.8	40
206	Selective Oxidation of Hydrogen in the Presence of Propylene over Pt-Based Core–Shell Nanocatalysts. Journal of Physical Chemistry C, 2015, 119, 21386-21394.	1.5	15
207	Au/uncalcined TS-1 catalysts for direct propene epoxidation with H2 and O2: Effects of Si/Ti molar ratio and Au loading. Chemical Engineering Journal, 2015, 278, 234-239.	6.6	64
208	H2 production by sorption enhanced steam reforming of biomass-derived bio-oil in a fluidized bed reactor: An assessment of the effect of operation variables using response surface methodology. Catalysis Today, 2015, 242, 19-34.	2.2	44
209	Recent Progresses in Understanding of Co-Based Fischer–Tropsch Catalysis by Means of Transient Kinetic Studies and Theoretical Analysis. Catalysis Letters, 2015, 145, 145-161.	1.4	59
210	Effect of steam addition on the structure and activity of Pt–Sn catalysts in propane dehydrogenation. Chemical Engineering Journal, 2015, 278, 240-248.	6.6	54
211	Coaxial Carbon/Metal Oxide/Aligned Carbon Nanotube Arrays as High-Performance Anodes for Lithium Ion Batteries. ChemSusChem, 2014, 7, 1201-1201.	3.6	0
212	H2 production by steam reforming with in situ CO2 capture of biomass-derived bio-oil. Energy Procedia, 2014, 63, 6815-6823.	1.8	7
213	Au nanoparticles deposited on the external surfaces of TS-1: Enhanced stability and activity for direct propylene epoxidation with H2 and O2. Applied Catalysis B: Environmental, 2014, 150-151, 396-401.	10.8	91
214	Fischer–Tropsch Synthesis: Deuterium Kinetic Isotopic Effect for a 2.5Â% Ru/NaY Catalyst. Topics in Catalysis, 2014, 57, 508-517.	1.3	11
215	Fischer–Tropsch Synthesis: Using Deuterium as a Tool to Investigate Primary Product Distribution. Catalysis Letters, 2014, 144, 524-530.	1.4	12
216	Fischer–Tropsch Synthesis: Impact of H2 or CO Activation on Methane Selectivity. Catalysis Letters, 2014. 144. 123-132.	1.4	18

#	Article	IF	CITATIONS
217	Kinetics of Catalytic Dehydrogenation of Propane over Pt-Based Catalysts. Advances in Chemical Engineering, 2014, 44, 61-125.	0.5	17
218	The Effect of Water on the Activity and Selectivity for Carbon Nanofiber Supported Cobalt Fischer–Tropsch Catalysts. Topics in Catalysis, 2014, 57, 491-499.	1.3	27
219	Fischer–Tropsch synthesis: A review of the effect of CO conversion on methane selectivity. Applied Catalysis A: General, 2014, 470, 250-260.	2.2	203
220	Production of fuel-cell grade hydrogen by sorption enhanced water gas shift reaction using Pd/Ni–Co catalysts. Applied Catalysis B: Environmental, 2014, 150-151, 585-595.	10.8	36
221	Mechanistic Insight into Size-Dependent Activity and Durability in Pt/CNT Catalyzed Hydrolytic Dehydrogenation of Ammonia Borane. Journal of the American Chemical Society, 2014, 136, 16736-16739.	6.6	273
222	Recent Approaches in Mechanistic and Kinetic Studies of Catalytic Reactions Using SSITKA Technique. ACS Catalysis, 2014, 4, 4527-4547.	5.5	133
223	Structural and electronic properties of the Pt _n –PAH complex (n = 1, 2) from density functional calculations. Physical Chemistry Chemical Physics, 2014, 16, 18586-18595.	1.3	11
224	Size Effects of Pt Nanoparticles Supported on Carbon Nanotubes for Selective Oxidation of Glycerol in a Base-Free Condition. Industrial & Engineering Chemistry Research, 2014, 53, 16309-16315.	1.8	35
225	Unique reactivity in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane. Chemical Communications, 2014, 50, 2142.	2.2	207
226	Evolution of Carbon Nanofiber-Supported Pt Nanoparticles of Different Particle Sizes: A Molecular Dynamics Study. Journal of Physical Chemistry C, 2014, 118, 23711-23722.	1.5	19
227	Discrimination of the mechanism of CH ₄ formation in Fischer–Tropsch synthesis on Co catalysts: a combined approach of DFT, kinetic isotope effects and kinetic analysis. Catalysis Science and Technology, 2014, 4, 3534-3543.	2.1	46
228	Tuning selectivity and stability in propane dehydrogenation by shaping Pt particles: A combined experimental and DFT study. Journal of Molecular Catalysis A, 2014, 395, 329-336.	4.8	48
229	Multifunctional Pd/Ni–Co Catalyst for Hydrogen Production by Chemical Looping Coupled With Steam Reforming of Acetic Acid. ChemSusChem, 2014, 7, 3063-3077.	3.6	42
230	CO Activation Pathways of Fischer–Tropsch Synthesis on χ-Fe5C2 (510): Direct versus Hydrogen-Assisted CO Dissociation. Journal of Physical Chemistry C, 2014, 118, 10170-10176.	1.5	104
231	Coaxial Carbon/Metal Oxide/Aligned Carbon Nanotube Arrays as Highâ€Performance Anodes for Lithium Ion Batteries. ChemSusChem, 2014, 7, 1335-1346.	3.6	29
232	Size effects of Pt-Re bimetallic catalysts for glycerol hydrogenolysis. Catalysis Today, 2014, 234, 208-214.	2.2	34
233	Insights into size-dependent activity and active sites of Au nanoparticles supported on TS-1 for propene epoxidation with H2 and O2. Journal of Catalysis, 2014, 317, 99-104.	3.1	85
234	Morphology dependence of catalytic properties of Ni nanoparticles at the tips of carbon nanofibers for ammonia decomposition to generate hydrogen. International Journal of Hydrogen Energy, 2014, 39, 20722-20730.	3.8	16

#	Article	IF	CITATIONS
235	Kinetic rate of <mml:math <br="" altimg="si48.gif" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mrow><mml:mrow><mml:mtext>CO</mml:mtext></mml:mrow><mml:mrov uptake of a synthetic Ca-based sorbent: Experimental data and numerical simulations. Fuel, 2014, 120, 53-65.</mml:mrov </mml:mrow></mml:math>	w> < mml:r 3.4	mny2
236	Microcalorimetric Studies on Co–Re/γ-Al2O3 Catalysts with Na Impurities for Fischer–Tropsch Synthesis. Industrial & Engineering Chemistry Research, 2014, 53, 1787-1793.	1.8	14
237	Carbon mediated catalysis: A review on oxidative dehydrogenation. Chinese Journal of Catalysis, 2014, 35, 824-841.	6.9	78
238	Reaction mechanism of CO activation and methane formation on Co Fischer–Tropsch catalyst: A combined DFT, transient, and steady-state kinetic modeling. Journal of Catalysis, 2013, 308, 37-49.	3.1	111
239	Monolithic, microchannel and carbon nanofibers/carbon felt reactors for syngas conversion by Fischer-Tropsch synthesis. Catalysis Today, 2013, 216, 150-157.	2.2	50
240	Preparation of stable cubic LaFeO3 nanoparticles using carbon nanotubes as templates. Journal of Materials Chemistry A, 2013, 1, 7006.	5.2	24
241	Fe particles on the tops of carbon nanofibers immobilized on structured carbon microfibers for ammonia decomposition. Catalysis Today, 2013, 216, 254-260.	2.2	23
242	Structure sensitivity of ammonia decomposition over Ni catalysts: A computational and experimental study. Fuel Processing Technology, 2013, 108, 112-117.	3.7	56
243	Microcalorimetric studies of H2 and CO on Co/γ-Al2O3 catalysts for Fischer–Tropsch synthesis. Catalysis Today, 2013, 214, 19-24.	2.2	12
244	3D aligned-carbon-nanotubes@Li2FeSiO4 arrays as high rate capability cathodes for Li-ion batteries. Nanotechnology, 2013, 24, 435703.	1.3	12
245	Synthesis of carbon nanofibers@MnO2 3D structures over copper foil as binder free anodes for lithium ion batteries. Journal of Energy Chemistry, 2013, 22, 78-86.	7.1	22
246	Towards a highly-efficient fuel-cell catalyst: optimization of Pt particle size, supports and surface-oxygen group concentration. Physical Chemistry Chemical Physics, 2013, 15, 3803.	1.3	46
247	Carbon Nanomaterials in Catalysis: Proton Affinity, Chemical and Electronic Properties, and their Catalytic Consequences. ChemCatChem, 2013, 5, 378-401.	1.8	228
248	A combined in situ XAS-XRPD-Raman study of Fischer–Tropsch synthesis over a carbon supported Co catalyst. Catalysis Today, 2013, 205, 86-93.	2.2	48
249	Preparation of nanocrystalline Na2ZrO3 for high-temperature CO2 acceptors: chemistry and mechanism. Journal of Energy Chemistry, 2013, 22, 387-393.	7.1	34
250	Promotional Effect of Carbon on Fe Catalysts for Ammonia Decomposition: A Density Functional Theory Study. Industrial & Engineering Chemistry Research, 2013, 52, 17151-17155.	1.8	11
251	Effect of heat treatment on the electrocatalytic properties of nano-structured Ru cores with Pt shells. Journal of Electroanalytical Chemistry, 2013, 704, 57-66.	1.9	14
252	Adsorption of a single Pt atom on polyaromatic hydrocarbons from first-principle calculations. Chemical Physics Letters, 2013, 575, 76-80.	1.2	8

#	Article	IF	CITATIONS
253	Facile synthesis of manganese oxide/aligned carbon nanotubes over aluminium foil as 3D binder free cathodes for lithium ion batteries. Journal of Materials Chemistry A, 2013, 1, 3757.	5.2	43
254	Evolution of Pt Nanoparticles Supported on Fishbone-Type Carbon Nanofibers with Cone–Helix Structures: A Molecular Dynamics Study. Journal of Physical Chemistry C, 2013, 117, 14261-14271.	1.5	10
255	Compact reactor for Fischer–Tropsch synthesis based on hierarchically structured Co catalysts: Towards better stability. Catalysis Today, 2013, 215, 121-130.	2.2	14
256	Hydrogen from Biomass. , 2013, , 111-133.		9
257	Structural manipulation of the catalysts for ammonia decomposition. Catalysis, 2013, , 118-140.	0.6	17
258	Ru@Pt core–shell nanoparticles for methanol fuel cell catalyst: Control and effects of shell composition. International Journal of Hydrogen Energy, 2013, 38, 16631-16641.	3.8	64
259	In Situ Production of Ni Catalysts at the Tips of Carbon Nanofibers and Application in Catalytic Ammonia Decomposition. Industrial & Engineering Chemistry Research, 2013, 52, 1854-1858.	1.8	31
260	Nanoconfinement of Ni clusters towards a high sintering resistance of steam methane reforming catalysts. Catalysis Science and Technology, 2012, 2, 2476.	2.1	20
261	MCM-41 supported Co Mo bimetallic catalysts for enhanced hydrogen production by ammonia decomposition. Chemical Engineering Journal, 2012, 207-208, 103-108.	6.6	81
262	Origin of synergistic effect over Ni-based bimetallic surfaces: A density functional theory study. Journal of Chemical Physics, 2012, 137, 014703.	1.2	64
263	First-principles calculations of ammonia decomposition on Ni(110) surface. Surface Science, 2012, 606, 549-553.	0.8	57
264	First-Principles Calculations of Propane Dehydrogenation over PtSn Catalysts. ACS Catalysis, 2012, 2, 1247-1258.	5.5	235
265	Chemical looping methane partial oxidation: The effect of the crystal size and O content of LaFeO3. Journal of Catalysis, 2012, 293, 175-185.	3.1	155
266	Metal Dusting Corrosion Initiation in Conversion of Natural Gas to Synthesis Gas. Energy Procedia, 2012, 26, 125-134.	1.8	5
267	Towards the upper bound of electrochemical performance of ACNT@polyaniline arrays as supercapacitors. Energy and Environmental Science, 2012, 5, 5833-5841.	15.6	77
268	Production of high purity hydrogen by sorption enhanced steam reforming of crude glycerol. International Journal of Hydrogen Energy, 2012, 37, 14047-14054.	3.8	84
269	A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts. Microporous and Mesoporous Materials, 2012, 164, 239-250.	2.2	291
270	Kinetic Analysis and Upper Bound of Ethylene Yield of Gas Phase Oxidative Dehydrogenation of Ethane to Ethylene. Industrial & amp; Engineering Chemistry Research, 2012, 51, 10571-10585.	1.8	12

#	Article	IF	CITATIONS
271	Sorption enhanced catalytic steam gasification process: a direct route from lignocellulosic biomass to high purity hydrogen. Energy and Environmental Science, 2012, 5, 6358.	15.6	77
272	Hydrogen Production from Glucose and Sorbitol by Sorptionâ€Enhanced Steam Reforming: Challenges and Promises. ChemSusChem, 2012, 5, 587-595.	3.6	34
273	Sorption enhanced steam reforming (SESR): a direct route towards efficient hydrogen production from biomassâ€derived compounds. Journal of Chemical Technology and Biotechnology, 2012, 87, 1367-1374.	1.6	15
274	Exploring Aligned arbonâ€Nanotubes@Polyaniline Arrays on Household Al as Supercapacitors. ChemSusChem, 2012, 5, 888-895.	3.6	37
275	Modeling of fishbone-type carbon nanofibers with cone-helix structures. Carbon, 2012, 50, 4359-4372.	5.4	39
276	Flat interface mediated synthesis of platelet carbon nanofibers on Fe nanoparticles. Catalysis Today, 2012, 186, 48-53.	2.2	13
277	Effect of Ag on the control of Ni-catalyzed carbon formation: A density functional theory study. Catalysis Today, 2012, 186, 54-62.	2.2	52
278	Understanding the kinetics and Re promotion of carbon nanotube supported cobalt catalysts by SSITKA. Catalysis Today, 2012, 186, 99-108.	2.2	30
279	Reply to the comment submitted by L.F.C. de Oliveira, F.R.L. Faulstich, F.M.Z. Zotin on "Raman spectroscopy and X-ray diffraction study of the phase transformation of ZrO2–Al2O3 and CeO2–Al2O3 nanocomposites―by S. Boullosa-Eiras, E. Vanhaecke, T. Zhao, D. Chen, A. Holmen [Catal. Today. 166 (2011) 10–171. Catalysis Today. 2012. 187. 217.	2.2	1
280	Ammonia decomposition on Fe(1 1 0), Co(1 1 1) and Ni(1 1 1) surfaces: A density functional theory study. Journal of Molecular Catalysis A, 2012, 357, 81-86.	4.8	114
281	DFT study of propane dehydrogenation on Pt catalyst: effects of step sites. Physical Chemistry Chemical Physics, 2011, 13, 3257.	1.3	173
282	Hierarchical Multiscale Modeling of Methane Steam Reforming Reactions. Industrial & Engineering Chemistry Research, 2011, 50, 2600-2612.	1.8	48
283	Synthesis of Platelet Carbon Nanofiber/Carbon Felt Composite on in Situ Generated Niâ^'Cu Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 1123-1133.	1.5	16
284	Catalytic Consequence of Oxygen of Lanthanum Ferrite Perovskite in Chemical Looping Reforming of Methane. Industrial & Engineering Chemistry Research, 2011, 50, 2613-2621.	1.8	117
285	Preparation of CNF-supported Pt catalysts for hydrogen evolution from decalin. Materials Chemistry and Physics, 2011, 126, 41-45.	2.0	20
286	Partial oxidation of methane to synthesis gas on Rh/ZrxCe1â^'xO2–Al2O3. Catalysis Today, 2011, 178, 12-24.	2.2	14
287	Towards an Efficient Hydrogen Production from Biomass: A Review of Processes and Materials. ChemCatChem, 2011, 3, 490-511.	1.8	85
288	A Current Perspective on Catalysis for New Energy Technologies. ChemCatChem, 2011, 3, 423-425.	1.8	4

#	Article	IF	CITATIONS
289	Coke Formation on Pt–Sn/Al2O3 Catalyst in Propane Dehydrogenation: Coke Characterization and Kinetic Study. Topics in Catalysis, 2011, 54, 888-896.	1.3	132
290	Effect of Pretreatment on Carbon-Supported Au/TiO2 Catalysts for Preferential Oxidation of CO. Topics in Catalysis, 2011, 54, 922-930.	1.3	10
291	Catalytic Consequence of the Interface Between Iron Catalysts and Foils in Synthesis of Aligned Nanocarbons on Foils. Topics in Catalysis, 2011, 54, 986-997.	1.3	14
292	Synthesis of Supported Catalysts by Impregnation and Calcination of Low-Temperature Polymerizable Metal-Complexes. Topics in Catalysis, 2011, 54, 1163-1174.	1.3	11
293	Fischer–Tropsch Synthesis on Hierarchically Structured Cobalt Nanoparticle/Carbon Nanofiber/Carbon Felt Composites. ChemSusChem, 2011, 4, 935-942.	3.6	32
294	Raman spectroscopy and X-ray diffraction study of the phase transformation of ZrO2–Al2O3 and CeO2–Al2O3 nanocomposites. Catalysis Today, 2011, 166, 10-17.	2.2	47
295	Enhanced hydrogen production by in situ CO2 removal on CaCeZrOx nanocrystals. Catalysis Today, 2011, 171, 43-51.	2.2	43
296	Effect of the preparation methods and alumina nanoparticles on the catalytic performance of Rh/ZrxCe1â^'xO2–Al2O3 in methane partial oxidation. Catalysis Today, 2011, 171, 104-115.	2.2	28
297	SE-SMR process performance in CFB reactors: Simulation of the CO2 adsorption/desorption processes with CaO based sorbents. International Journal of Greenhouse Gas Control, 2011, 5, 489-497.	2.3	44
298	Kinetics of propane dehydrogenation over Pt–Sn/Al2O3 catalyst. Applied Catalysis A: General, 2011, 398, 18-26.	2.2	90
299	Tuning the size and shape of Fe nanoparticles on carbon nanofibers for catalytic ammonia decomposition. Applied Catalysis B: Environmental, 2011, 101, 189-196.	10.8	136
300	Role of CO2 in ethylbenzene dehydrogenation over Fe2O3(0 0 0 1) from first principles. Journal of Molecular Catalysis A, 2011, 344, 53-61.	4.8	16
301	CO stripping as an electrochemical tool for characterization of Ru@Pt core-shell catalysts. Journal of Electroanalytical Chemistry, 2011, 655, 140-146.	1.9	116
302	Toward CH ₄ dissociation and C diffusion during Ni/Fe-catalyzed carbon nanofiber growth: A density functional theory study. Journal of Chemical Physics, 2011, 134, 134704.	1.2	30
303	First-principles calculations of C diffusion through the surface and subsurface of Ag/Ni(100) and reconstructed Ag/Ni(100). Surface Science, 2010, 604, 186-195.	0.8	8
304	Synthesis of carbon nanofibers/mica hybrids for antistatic coatings. Materials Letters, 2010, 64, 711-714.	1.3	13
305	Singleâ€Stage Production of Highly Concentrated Hydrogen from Biomassâ€Derived Syngas. ChemSusChem, 2010, 3, 1169-1171.	3.6	17
306	The effect of heat treatment in air on CO inhibition of a â^¼3μm Pd–Ag (23wt.%) membrane. Journal of Membrane Science, 2010, 350, 371-377.	4.1	42

#	Article	IF	CITATIONS
307	Density functional study of the chemisorption of C1, C2 and C3 intermediates in propane dissociation on Pt(111). Journal of Molecular Catalysis A, 2010, 321, 42-49.	4.8	77
308	In situ polymerization and characterizations of polyaniline on MWCNT powders and aligned MWCNT films. Catalysis Today, 2010, 150, 71-76.	2.2	38
309	Kinetically controlled synthesis of carbon nanofibers with different morphologies by catalytic CO disproportionation over iron catalyst. Chemical Engineering Science, 2010, 65, 193-200.	1.9	9
310	Carbon Nanofiber-Supported Ru Catalysts for Hydrogen Evolution by Ammonia Decomposition. Chinese Journal of Catalysis, 2010, 31, 979-986.	6.9	48
311	Understanding the Effect of Cobalt Particle Size on Fischerâ^'Tropsch Synthesis: Surface Species and Mechanistic Studies by SSITKA and Kinetic Isotope Effect. Langmuir, 2010, 26, 16558-16567.	1.6	96
312	Approaching Sustainable H ₂ Production: Sorption Enhanced Steam Reforming of Ethanol. Journal of Physical Chemistry A, 2010, 114, 3834-3844.	1.1	85
313	Importance of Oxygen-Free Edge and Defect Sites for the Immobilization of Colloidal Pt Oxide Particles with Implications for the Preparation of CNF-Supported Catalysts. Journal of Physical Chemistry C, 2010, 114, 1752-1762.	1.5	53
314	Towards efficient hydrogen production from glycerol by sorption enhanced steam reforming. Energy and Environmental Science, 2010, 3, 1046.	15.6	111
315	Molecular Dynamics Simulations of Metal Clusters Supported on Fishbone Carbon Nanofibers. Journal of Physical Chemistry C, 2010, 114, 3522-3530.	1.5	24
316	Effects of Steam Addition on the Properties of High Temperature Ceramic CO2 Acceptors. Journal of Environmental Engineering, ASCE, 2009, 135, 397-403.	0.7	77
317	Raman tweezers provide the fingerprint of cells supporting the late stages of KSHV reactivation. Journal of Cellular and Molecular Medicine, 2009, 13, 1920-1932.	1.6	4
318	The nature of active chromium species in Cr-catalysts for dehydrogenation of propane: New insights by a comprehensive spectroscopic study. Journal of Catalysis, 2009, 261, 116-128.	3.1	150
319	Structureâ€sensitivity of CH ₃ dissociation on Ni(100)from firstâ€principles calculations. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 511-517.	0.8	3
320	Effect of hydrogen on the synthesis of carbon nanofibers by CO disproportionation on ultrafine Fe ₃ O ₄ . Asia-Pacific Journal of Chemical Engineering, 2009, 4, 590-595.	0.8	0
321	Co–Ni Catalysts Derived from Hydrotalcite-Like Materials for Hydrogen Production by Ethanol Steam Reforming. Topics in Catalysis, 2009, 52, 206-217.	1.3	133
322	Hydrogen Oxidation Catalyzed by Pt Supported on Carbon Nanofibers with Different Graphite Sheet Orientations. Topics in Catalysis, 2009, 52, 664-674.	1.3	10
323	The influence of pore geometry of Pt containing ZSM-5, Beta and SBA-15 catalysts on dehydrogenation of propane. Microporous and Mesoporous Materials, 2009, 126, 152-158.	2.2	38
324	Dehydrogenation of propane over Pt-SBA-15 and Pt-Sn-SBA-15: Effect of Sn on the dispersion of Pt and catalytic behavior. Catalysis Today, 2009, 142, 17-23.	2.2	128

#	Article	IF	CITATIONS
325	DFT studies of dry reforming of methane on Ni catalyst. Catalysis Today, 2009, 148, 260-267.	2.2	320
326	Carbon nanofiber-supported palladium nanoparticles as potential recyclable catalysts for the Heck reaction. Applied Catalysis A: General, 2009, 352, 243-250.	2.2	98
327	Enhanced Distribution and Anchorage of Carbon Nanofibers Grown on Structured Carbon Microfibers. Journal of Physical Chemistry C, 2009, 113, 1301-1307.	1.5	18
328	CNFs-supported Pt catalyst for hydrogen evolution from decalin. Catalysis Communications, 2009, 10, 815-818.	1.6	37
329	Catalytic Vapor Decomposition of Methane over Nickle Catalyst: Growth Rate and the Corresponding Microstructures of Carbon Nanofibers. Journal of Chemical Engineering of Japan, 2009, 42, S204-S211.	0.3	2
330	Oxygen reduction reaction properties of carbon nanofibers: Effect of metal purification. Electrochimica Acta, 2008, 53, 3587-3596.	2.6	19
331	Novel oxygen-carrier materials for chemical-looping combustion and chemical-looping reforming; LaxSr1â^'xFeyCo1â^'yO3â^'Î perovskites and mixed-metal oxides of NiO, Fe2O3 and Mn3O4. International Journal of Greenhouse Gas Control, 2008, 2, 21-36.	2.3	222
332	Carbon Nanofiber-Supported Pd Catalysts for Heck Reaction: Effects of Support Interaction. Chinese Journal of Catalysis, 2008, 29, 1145-1151.	6.9	27
333	Large-scale synthesis of carbon nanofibers on Ni-Fe-Al hydrotalcite derived catalysts. Applied Catalysis A: General, 2008, 338, 147-158.	2.2	30
334	Dynamic methods for catalytic kinetics. Applied Catalysis A: General, 2008, 342, 3-28.	2.2	99
335	Hydrodesulfurization of thiophene on carbon nanofiber supported Co/Ni/Mo catalysts. Applied Catalysis B: Environmental, 2008, 84, 482-489.	10.8	49
336	Deposition of Au colloids on plasmachemically modified carbon nanofibers. Carbon, 2008, 46, 759-765.	5.4	21
337	Large-scale synthesis of carbon nanofibers on Ni–Fe–Al hydrotalcite derived catalysts. Applied Catalysis A: General, 2008, 338, 136-146.	2.2	51
338	Optimization and scale-up of CNF production based on intrinsic kinetic data obtained from TEOM. Journal of Catalysis, 2008, 256, 204-214.	3.1	29
339	Dehydrogenation of propane over Pt-SBA-15: Effect of Pt particle size. Catalysis Communications, 2008, 9, 747-750.	1.6	113
340	Molecular Dynamics Simulations of Carbon-Supported Ni Clusters Using the Reax Reactive Force Field. Journal of Physical Chemistry C, 2008, 112, 12663-12668.	1.5	28
341	Compositional Effects of Nanocrystalline Lithium Zirconate on Its CO ₂ Capture Properties. Industrial & Engineering Chemistry Research, 2008, 47, 434-442.	1.8	74
342	Molecular Dynamics Simulations of the Interactions between Platinum Clusters and Carbon Platelets. Journal of Physical Chemistry A, 2008, 112, 1392-1402.	1.1	80

#	Article	IF	CITATIONS
343	Role of Dipicolinic Acid in the Germination, Stability, and Viability of Spores of <i>Bacillus subtilis</i> . Journal of Bacteriology, 2008, 190, 4798-4807.	1.0	82
344	Detection of Bacillus thuringiensis Spore Germination via CaDPA Biomarker Using Laser Tweezers Raman Spectroscopy. , 2007, , .		0
345	Depolarized Raman spectroscopy of Optically Trapped Cells for Rapid Identification of Microorganisms. , 2007, , .		0
346	How Moist Heat Kills Spores of <i>Bacillus subtilis</i> . Journal of Bacteriology, 2007, 189, 8458-8466.	1.0	170
347	Levels of Ca 2+ -Dipicolinic Acid in Individual Bacillus Spores Determined Using Microfluidic Raman Tweezers. Journal of Bacteriology, 2007, 189, 4681-4687.	1.0	130
348	Characterization of Catalysts under Working Conditions with an Oscillating Microbalance Reactor. Advances in Catalysis, 2007, 51, 351-382.	0.1	19
349	Experimental demonstration of H2 production by CO2 sorption enhanced steam methane reforming using ceramic acceptors. Studies in Surface Science and Catalysis, 2007, , 159-164.	1.5	16
350	Numerical Investigation of Sorption Enhanced Steam Methane Reforming Using Li2ZrO3as CO2-acceptor. Industrial & Engineering Chemistry Research, 2007, 46, 4435-4443.	1.8	59
351	Detection of bacillus thuringiensis spore germination via CaDPA biomarker using laser tweezers raman spectroscopy. , 2007, , .		0
352	First-Principles Study of C Adsorption and Diffusion on the Surfaces and in the Subsurfaces of Nonreconstructed and Reconstructed Ni(100). Journal of Physical Chemistry C, 2007, 111, 3447-3453.	1.5	14
353	Preparation and High-Temperature CO2Capture Properties of Nanocrystalline Na2ZrO3. Chemistry of Materials, 2007, 19, 3294-3301.	3.2	101
354	Hydrogen Production by Sorption-Enhanced Steam Methane Reforming Using Lithium Oxides as CO ₂ -Acceptor. Industrial & Engineering Chemistry Research, 2007, 46, 8729-8737.	1.8	83
355	Process design simulation of H2production by sorption enhanced steam methane reforming: evaluation of potential CO2acceptors. Green Chemistry, 2007, 9, 654-662.	4.6	110
356	First-principles study of C chemisorption and diffusion on the surface and in the subsurfaces of Ni(111) during the growth of carbon nanofibers. Surface Science, 2007, 601, 1319-1325.	0.8	26
357	First-principles study of carbon diffusion in bulk nickel during the growth of fishbone-type carbon nanofibers. Carbon, 2007, 45, 21-27.	5.4	45
358	Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon, 2007, 45, 785-796.	5.4	935
359	Synthesis of composite materials of carbon nanofibres and ceramic monoliths with uniform and tuneable nanofibre layer thickness. Carbon, 2007, 45, 1828-1838.	5.4	52
360	Au–TiO2 catalysts on carbon nanofibres prepared by deposition-precipitation and from colloid solutions. Catalysis Today, 2007, 123, 245-256.	2.2	34

#	Article	IF	CITATIONS
361	Rational design of the carbon nanofiber catalysts for oxidative dehydrogenation of ethylbenzene. Applied Catalysis A: General, 2007, 323, 135-146.	2.2	93
362	First-principles calculations of CH4 dissociation on Ni(100) surface along different reaction pathways. Journal of Molecular Catalysis A, 2007, 264, 299-308.	4.8	33
363	Nanocrystalline Cu-Ce-Zr mixed oxide catalysts for water-gas shift: Carbon nanofibers as dispersing agent for the mixed oxide particles. Applied Catalysis B: Environmental, 2007, 71, 7-15.	10.8	29
364	Methanol Conversion to Light Olefins over SAPO-34:Â Reaction Network and Deactivation Kinetics. Industrial & Engineering Chemistry Research, 2007, 46, 4116-4123.	1.8	118
365	A Novel internally heated Au/TiO2 carbon-carbon composite structured reactor for low-temperature CO oxidation. Gold Bulletin, 2007, 40, 234-239.	3.2	13
366	Ni catalysts for sorption enhanced steam methane reforming. Topics in Catalysis, 2007, 45, 3-8.	1.3	32
367	Identification of valence shifts in Au during the water-gas shift reaction. Topics in Catalysis, 2007, 45, 25-29.	1.3	7
368	Role of surface oxygen in the preparation and deactivation of carbon nanofiber supported cobalt Fischer–Tropsch catalysts. Topics in Catalysis, 2007, 45, 69-74.	1.3	25
369	On the preparation methods for carbon nanofiber-supported Pt catalysts. Topics in Catalysis, 2007, 45, 81-85.	1.3	36
370	The effect of graphitic platelet orientation on the properties of carbon nanofiber supported Pd catalysts prepared by ion exchange. Topics in Catalysis, 2007, 45, 87-91.	1.3	16
371	Au–TiO2 catalysts stabilised by carbon nanofibres. Catalysis Today, 2007, 122, 365-369.	2.2	12
372	Real-Time Detection of Kinetic Germination and Heterogeneity of SingleBacillusSpores by Laser Tweezers Raman Spectroscopy. Analytical Chemistry, 2006, 78, 6936-6941.	3.2	113
373	Nanocrystalline Lithium Zirconate with Improved Kinetics for High-Temperature CO2Capture. Chemistry of Materials, 2006, 18, 1383-1385.	3.2	93
374	Structural characterization of carbon nanofibers formed from different carbon-containing gases. Carbon, 2006, 44, 3255-3262.	5.4	106
375	Synthesis of carbon nanofiber/graphite-felt composite as a catalyst. Microporous and Mesoporous Materials, 2006, 95, 1-7.	2.2	64
376	Effect of supports and Ni crystal size on carbon formation and sintering during steam methane reforming. Applied Catalysis A: General, 2006, 314, 9-22.	2.2	367
377	Microkinetic modelling of the formation of C1 and C2 products in the Fischer–Tropsch synthesis over cobalt catalysts. Surface Science, 2006, 600, 2051-2063.	0.8	130
378	Synthesis and CO2Capture Properties of Nanocrystalline Lithium Zirconate. Chemistry of Materials, 2006, 18, 6037-6046.	3.2	116

#	Article	IF	CITATIONS
379	Carbon Nanofiber Supported Cobalt Catalysts for Fischer–Tropsch Synthesis with High Activity and Selectivity. Catalysis Letters, 2006, 109, 43-47.	1.4	54
380	Remarks on the passivation of reduced Cu-, Ni-, Fe-, Co-based catalysts. Catalysis Letters, 2006, 110, 211-220.	1.4	28
381	Carbon Nanofibers Uniformly Grown on γ-Alumina Washcoated Cordierite Monoliths. Advanced Materials, 2006, 18, 1589-1592.	11.1	71
382	Dehydrogenation of ethylbenzene with carbon dioxide over carbon nanofiber supported iron oxide. Studies in Surface Science and Catalysis, 2006, 159, 741-744.	1.5	1
383	Pre-reforming of natural gas on a Ni catalyst. Applied Catalysis A: General, 2005, 282, 195-204.	2.2	95
384	Oligomerization of isobutene over solid acid catalysts. Catalysis Today, 2005, 100, 463-466.	2.2	57
385	Relating catalyst structure and composition to the water–gas shift activity of Cu–Zn-based mixed-oxide catalysts. Catalysis Today, 2005, 100, 249-254.	2.2	39
386	Carbon nanofiber supported Ni catalyst: Effects of nanostructure of supports and catalyst preparation. Catalysis Today, 2005, 102-103, 45-49.	2.2	26
387	Sorption enhanced hydrogen production by steam methane reforming using Li2ZrO3 as sorbent: Sorption kinetics and reactor simulation. Catalysis Today, 2005, 106, 41-46.	2.2	171
388	Catalytic engineering of carbon nanotube production. Applied Catalysis A: General, 2005, 279, 223-233.	2.2	40
389	Synthesis of carbon nanofibers: effects of Ni crystal size during methane decomposition. Journal of Catalysis, 2005, 229, 82-96.	3.1	429
390	Parametric study of carbon nanofiber growth by catalytic ethylene decomposition on hydrotalcite derived catalysts. Materials Chemistry and Physics, 2005, 92, 71-81.	2.0	26
391	Effect of catalyst preparation on the carbon nanotube growth rate. Catalysis Today, 2005, 100, 261-267.	2.2	66
392	Highly active Cu-based catalysts on carbon nanofibers for isopropanol dehydrogenation. Catalysis Today, 2005, 100, 391-395.	2.2	25
393	Effect of Support and Reactant on the Yield and Structure of Carbon Growth by Chemical Vapor Deposition. Journal of Physical Chemistry B, 2005, 109, 6096-6102.	1.2	61
394	Energetic Mapping of Ni Catalysts by Detailed Kinetic Modelingâ€. Journal of Physical Chemistry B, 2005, 109, 2360-2370.	1.2	17
395	Self-stabilization of Ni catalysts during carbon dioxide reforming of methane. Studies in Surface Science and Catalysis, 2004, 147, 181-186.	1.5	2
396	Effect of carbon nanofiber-induced microstrain on the catalytic activity of Ni crystals. Surface Science, 2004, 554, L107-L112.	0.8	33

#	Article	lF	CITATIONS
397	Synthesis of Dimethyl Oxalate from CO and CH3ONO on Carbon Nanofiber Supported Palladium Catalysts. Industrial & Engineering Chemistry Research, 2004, 43, 4595-4601.	1.8	55
398	Microkinetic model assisted catalyst design for steam methane reforming. Studies in Surface Science and Catalysis, 2004, , 139-144.	1.5	12
399	A Model for Reforming on Ni Catalyst with Carbon Formation and Deactivation. Studies in Surface Science and Catalysis, 2001, 139, 93-100.	1.5	22
400	Deactivation during carbon dioxide reforming of methane over Ni catalyst: microkinetic analysis. Chemical Engineering Science, 2001, 56, 1371-1379.	1.9	154
401	A study of coke formation kinetics by a conventional and an oscillating microbalance on steam reforming catalysts. Studies in Surface Science and Catalysis, 2000, 130, 3639-3644.	1.5	4
402	The effect of the particle size on methanol conversion to light olefins. Studies in Surface Science and Catalysis, 2000, , 2651-2656.	1.5	5
403	Kinetic study of initiation and growth of filamentous carbon during methane cracking over Ni/α-Al2O3. Studies in Surface Science and Catalysis, 1999, 126, 473-476.	1.5	7
404	The effect of crystal size of SAPO-34 on the selectivity and deactivation of the MTO reaction. Microporous and Mesoporous Materials, 1999, 29, 191-203.	2.2	311
405	Diffusion and deactivation during methanol conversion over SAPO-34: a percolation approach. Chemical Engineering Science, 1999, 54, 3465-3473.	1.9	59
406	Methanol Conversion to Light Olefins over SAPO-34. Sorption, Diffusion, and Catalytic Reactions. Industrial & Engineering Chemistry Research, 1999, 38, 4241-4249.	1.8	73
407	Dimethyl ether conversion to light olefins over SAPO-34: Deactivation due to coke deposition. Studies in Surface Science and Catalysis, 1998, 119, 521-526.	1.5	11
408	The role of coke deposition in the conversion of methanol to olefins over SAPO-34. Studies in Surface Science and Catalysis, 1997, , 159-166.	1.5	27
409	Adsorption and Diffusion in HZSM-5 Zeolite Studied by an Oscillating Microbalance. Collection of Czechoslovak Chemical Communications, 1997, 62, 1832-1842.	1.0	16
410	Influence of Coke Deposition on Selectivity in Zeolite Catalysis. Industrial & Engineering Chemistry Research, 1997, 36, 3473-3479.	1.8	89
411	Effect of coke deposition on transport and adsorption in zeolites studied by a new microbalance reactor. Chemical Engineering Science, 1996, 51, 2687-2692.	1.9	54
412	Catalyst deactivation studied by conventional and oscillating microbalance reactors. Applied Catalysis A: General, 1996, 137, L1-L8.	2.2	70
413	Chapter 3. Novel carbon materials modified with heteroatoms as metal-free catalyst and metal catalyst support. Catalysis, 0, , 72-108.	0.6	11
414	Molecular‣evel Insights into the Notorious CO Poisoning of Platinum Catalyst. Angewandte Chemie, 0, , .	1.6	0