Rolf Inge Skotheim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5081185/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Longâ€term firstâ€inâ€man Phase I/II study of an adjuvant dendritic cell vaccine in patients with highâ€risk prostate cancer after radical prostatectomy. Prostate, 2022, 82, 245-253.	1.2	13
2	Re: Fibroblast Growth Factor Receptor 1 Drives the Metastatic Progression of Prostate Cancer. European Urology, 2022, 81, 431.	0.9	1
3	Collision tumors revealed by prospectively assessing subtype-defining molecular alterations in 904 individual prostate cancer foci. JCI Insight, 2022, 7, .	2.3	6
4	Expressed prognostic biomarkers for primary prostate cancer independent of multifocality and transcriptome heterogeneity. Cancer Gene Therapy, 2022, 29, 1276-1284.	2.2	3
5	NRF2 drives an oxidative stress response predictive of breast cancer. Free Radical Biology and Medicine, 2022, 184, 170-184.	1.3	8
6	<i>In situ</i> expression of <scp>ERG</scp> protein in the context of tumor heterogeneity identifies prostate cancer patients with inferior prognosis. Molecular Oncology, 2022, 16, 2810-2822.	2.1	3
7	Association Study between Polymorphisms in DNA Methylation–Related Genes and Testicular Germ Cell Tumor Risk. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1769-1779.	1.1	4
8	High expression of SCHLAP1 in primary prostate cancer is an independent predictor of biochemical recurrence, despite substantial heterogeneity. Neoplasia, 2021, 23, 634-641.	2.3	16
9	Identification of 22 susceptibility loci associated with testicular germ cell tumors. Nature Communications, 2021, 12, 4487.	5.8	27
10	The expressed mutational landscape of microsatellite stable colorectal cancers. Genome Medicine, 2021, 13, 142.	3.6	4
11	ScaR—a tool for sensitive detection of known fusion transcripts: establishing prevalence of fusions in testicular germ cell tumors. NAR Genomics and Bioinformatics, 2020, 2, lqz025.	1.5	1
12	Frequent copy number gains of SLC2A3 and ETV1 in testicular embryonal carcinomas. Endocrine-Related Cancer, 2020, 27, 457-468.	1.6	2
13	Frequent copy number gains of SLC2A3 and ETV1 in testicular embryonal carcinomas. Endocrine-Related Cancer, 2020, 27, 457-468.	1.6	4
14	Alternative splicing expands the prognostic impact of <i>KRAS</i> in microsatellite stable primary colorectal cancer. International Journal of Cancer, 2019, 144, 841-847.	2.3	26
15	GREM1 is associated with metastasis and predicts poor prognosis in ER-negative breast cancer patients. Cell Communication and Signaling, 2019, 17, 140.	2.7	32
16	Interfocal heterogeneity challenges the clinical usefulness of molecular classification of primary prostate cancer. Scientific Reports, 2019, 9, 13579.	1.6	38
17	Transcriptional and functional consequences of TP53 splice mutations in colorectal cancer. Oncogenesis, 2019, 8, 35.	2.1	19
18	Multifocal Primary Prostate Cancer Exhibits High Degree of Genomic Heterogeneity. European Urology, 2019, 75, 498-505.	0.9	108

#	Article	IF	CITATIONS
19	Complex Polygenic Nature of Testicular Germ Cell Cancer Suggests Multifactorial Aetiology. European Urology, 2018, 73, 832-833.	0.9	8
20	CRABP1, C1QL1 and LCN2 are biomarkers of differentiated thyroid carcinoma, and predict extrathyroidal extension. BMC Cancer, 2018, 18, 68.	1.1	26
21	<i>chimeraviz</i> : a tool for visualizing chimeric RNA. Bioinformatics, 2017, 33, 2954-2956.	1.8	23
22	Bilateral ovarian carcinomas differ in the expression of metastasis-related genes. Oncology Letters, 2017, 13, 184-190.	0.8	3
23	Multilevel genomics of colorectal cancers with microsatellite instability—clinical impact of JAK1 mutations and consensus molecular subtype 1. Genome Medicine, 2017, 9, 46.	3.6	71
24	Observed correlation between the expression levels of catalytic subunit, Cβ2, of cyclic adenosine monophosphate–dependent protein kinase and prostate cancer aggressiveness. Urologic Oncology: Seminars and Original Investigations, 2017, 35, 111.e1-111.e8.	0.8	6
25	Involvement of DPP9 in gene fusions in serous ovarian carcinoma. BMC Cancer, 2017, 17, 642.	1.1	22
26	Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies. Molecular Cancer, 2017, 16, 116.	7.9	232
27	Novel transcription-induced fusion RNAs in prostate cancer. Oncotarget, 2017, 8, 49133-49143.	0.8	11
28	MicroRNAs as growth regulators, their function and biomarker status in colorectal cancer. Oncotarget, 2016, 7, 6476-6505.	0.8	93
29	PBX3 is a putative biomarker of aggressive prostate cancer. International Journal of Cancer, 2016, 139, 1810-1820.	2.3	32
30	Identification of Novel Fusion Genes in Testicular Germ Cell Tumors. Cancer Research, 2016, 76, 108-116.	0.4	25
31	Unscrambling the genomic chaos of osteosarcoma reveals extensive transcript fusion, recurrent rearrangements and frequent novel TP53 aberrations. Oncotarget, 2016, 7, 5273-5288.	0.8	60
32	TIN: An R Package for Transcriptome Instability Analysis. Cancer Informatics, 2015, 14, CIN.S31363.	0.9	4
33	Profiling of the small RNA populations in human testicular germ cell tumors shows global loss of piRNAs. Molecular Cancer, 2015, 14, 153.	7.9	48
34	The androgen receptor controls expression of the cancer-associated sTn antigen and cell adhesion through induction of ST6GalNAc1 in prostate cancer. Oncotarget, 2015, 6, 34358-34374.	0.8	68
35	Novel RNA variants in colorectal cancers. Oncotarget, 2015, 6, 36587-36602.	0.8	15
36	Regulator of Chromosome Condensation 2 Identifies High-Risk Patients within Both Major Phenotypes of Colorectal Cancer. Clinical Cancer Research, 2015, 21, 3759-3770.	3.2	32

#	Article	IF	CITATIONS
37	Protein expression of BIRC5, TK1, and TOP2A in malignant peripheral nerve sheath tumours – A prognostic test after surgical resection. Molecular Oncology, 2015, 9, 1129-1139.	2.1	32
38	Exome Sequencing of Bilateral Testicular Germ Cell Tumors Suggests Independent Development Lineages. Neoplasia, 2015, 17, 167-174.	2.3	17
39	Specific and redundant activities of <i>ETV1</i> and <i>ETV4</i> in prostate cancer aggressiveness revealed by co-overexpression cellular contexts. Oncotarget, 2015, 6, 5217-5236.	0.8	24
40	High Frequency of Fusion Transcripts Involving TCF7L2 in Colorectal Cancer: Novel Fusion Partner and Splice Variants. PLoS ONE, 2014, 9, e91264.	1.1	26
41	Chromosome 19 rearrangements in ovarian carcinomas: Zinc finger genes are particularly targeted. Genes Chromosomes and Cancer, 2014, 53, 558-567.	1.5	4
42	A novel transcript, <i>VNN1â€AB</i> , as a biomarker for colorectal cancer. International Journal of Cancer, 2014, 135, 2077-2084.	2.3	18
43	The recently suggested intestinal cancer stem cell marker <i>DCLK1</i> is an epigenetic biomarker for colorectal cancer. Epigenetics, 2014, 9, 346-350.	1.3	55
44	PIKfyve, MTMR3 and their product PtdIns5 <i>P</i> regulate cancer cell migration and invasion through activation of Rac1. Biochemical Journal, 2014, 461, 383-390.	1.7	42
45	Transcriptome instability as a molecular pan-cancer characteristic of carcinomas. BMC Genomics, 2014, 15, 672.	1.2	15
46	BCL-XL Mediates the Strong Selective Advantage of a 20q11.21 Amplification Commonly Found in Human Embryonic Stem Cell Cultures. Stem Cell Reports, 2013, 1, 379-386.	2.3	132
47	Testicular germ cell tumor susceptibility associated with the UCK2 locus on chromosome 1q23. Human Molecular Genetics, 2013, 22, 2748-2753.	1.4	59
48	Transforming Pluripotency: An Exon-Level Study of Malignancy-Specific Transcripts in Human Embryonal Carcinoma and Embryonic Stem Cells. Stem Cells and Development, 2013, 22, 1136-1146.	1.1	17
49	Novel 5′ Fusion Partners of ETV1 and ETV4 in Prostate Cancer. Neoplasia, 2013, 15, 720-IN6.	2.3	36
50	Meta-analysis identifies four new loci associated with testicular germ cell tumor. Nature Genetics, 2013, 45, 680-685.	9.4	154
51	Molecular Characteristics of Malignant Ovarian Germ Cell Tumors and Comparison With Testicular Counterparts: Implications for Pathogenesis. Endocrine Reviews, 2013, 34, 339-376.	8.9	77
52	Common Fusion Transcripts Identified in Colorectal Cancer Cell Lines by High-Throughput RNA Sequencing. Translational Oncology, 2013, 6, 546-IN5.	1.7	29
53	Anticipating the Clinical Use of Prognostic Gene Expression–Based Tests for Colon Cancer Stage II and III: Is Godot Finally Arriving?. Clinical Cancer Research, 2013, 19, 6669-6677.	3.2	27
54	Assessment of Fusion Gene Status in Sarcomas Using a Custom Made Fusion Gene Microarray. PLoS ONE, 2013, 8, e70649.	1.1	3

#	Article	IF	CITATIONS
55	Molecular Subtyping of Primary Prostate Cancer Reveals Specific and Shared Target Genes of Different ETS Rearrangements. Neoplasia, 2012, 14, 600-IN15.	2.3	63
56	MiR-9, -31, and -182 Deregulation Promote Proliferation and Tumor Cell Survival in Colon Cancer. Neoplasia, 2012, 14, 868-IN21.	2.3	124
57	Oncogenicity of the Developmental Transcription Factor Sox9. Cancer Research, 2012, 72, 1301-1315.	0.4	180
58	ColoGuidePro: A Prognostic 7-Gene Expression Signature for Stage III Colorectal Cancer Patients. Clinical Cancer Research, 2012, 18, 6001-6010.	3.2	109
59	ColoGuideEx: a robust gene classifier specific for stage II colorectal cancer prognosis. Gut, 2012, 61, 1560-1567.	6.1	179
60	Survey of 548 oncogenic fusion transcripts in thyroid tumors supports the importance of the already established thyroid fusions genes. Genes Chromosomes and Cancer, 2012, 51, 1154-1164.	1.5	20
61	Whole-Transcriptome Sequencing Identifies Novel IRF2BP2-CDX1 Fusion Gene Brought about by Translocation t(1;5)(q42;q32) in Mesenchymal Chondrosarcoma. PLoS ONE, 2012, 7, e49705.	1.1	77
62	The exonâ€level biomarker <i>SLC39A14</i> has organ onfined cancerâ€specificity in colorectal cancer. International Journal of Cancer, 2012, 131, 1479-1485.	2.3	20
63	<i>FLI1</i> is a novel ETS transcription factor involved in gene fusions in prostate cancer. Genes Chromosomes and Cancer, 2012, 51, 240-249.	1.5	73
64	Potential Downstream Target Genes of Aberrant ETS Transcription Factors Are Differentially Affected in Ewing's Sarcoma and Prostate Carcinoma. PLoS ONE, 2012, 7, e49819.	1.1	21
65	Cysteine-Rich Secretory Protein-3 (CRISP3) Is Strongly Up-Regulated in Prostate Carcinomas with the TMPRSS2-ERG Fusion Gene. PLoS ONE, 2011, 6, e22317.	1.1	36
66	Transcriptome instability in colorectal cancer identified by exon microarray analyses: Associations with splicing factor expression levels and patient survival. Genome Medicine, 2011, 3, 32.	3.6	73
67	A Tumor-Associated Mutation of FYVE-CENT Prevents Its Interaction with Beclin 1 and Interferes with Cytokinesis. PLoS ONE, 2011, 6, e17086.	1.1	30
68	Identification of an epigenetic biomarker panel with high sensitivity and specificity for colorectal cancer and adenomas. Molecular Cancer, 2011, 10, 85.	7.9	126
69	Fusion gene microarray reveals cancer typeâ€specificity among fusion genes. Genes Chromosomes and Cancer, 2011, 50, 348-357.	1.5	15
70	Phospholipase C Isozymes Are Deregulated in Colorectal Cancer – Insights Gained from Gene Set Enrichment Analysis of the Transcriptome. PLoS ONE, 2011, 6, e24419.	1.1	58
71	Array GH analysis of microdissected chromosome 19 markers in ovarian carcinoma identifies candidate target genes. Genes Chromosomes and Cancer, 2010, 49, 1046-1053.	1.5	18
72	PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody. Nature Cell Biology, 2010, 12, 362-371.	4.6	195

#	Article	IF	CITATIONS
73	Three Epigenetic Biomarkers, <i>GDF15</i> , <i>TMEFF2</i> , and <i>VIM</i> , Accurately Predict Bladder Cancer from DNA-Based Analyses of Urine Samples. Clinical Cancer Research, 2010, 16, 5842-5851.	3.2	155
74	Spindle proteins are differentially expressed in the various histological subtypes of testicular germ cell tumors. Journal of Carcinogenesis, 2010, 9, 1.	2.5	21
75	Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene expression data identify candidate susceptibility loci. Molecular Cancer, 2010, 9, 100.	7.9	75
76	Genomic Changes in Chromosomes 10, 16, and X in Malignant Peripheral Nerve Sheath Tumors Identify a High-Risk Patient Group. Journal of Clinical Oncology, 2010, 28, 1573-1582.	0.8	54
77	Reverse painting of microdissected chromosome 19 markers in ovarian carcinoma identifies a complex rearrangement map. Genes Chromosomes and Cancer, 2009, 48, 184-193.	1.5	23
78	TPD52, a candidate gene from genomic studies, is overexpressed in testicular germ cell tumours. Molecular and Cellular Endocrinology, 2009, 306, 75-80.	1.6	9
79	A universal assay for detection of oncogenic fusion transcripts by oligo microarray analysis. Molecular Cancer, 2009, 8, 5.	7.9	25
80	Identification of p53 as a strong predictor of survival for patients with malignant peripheral nerve sheath tumors. Neuro-Oncology, 2009, 11, 514-528.	0.6	47
81	Gene methylation profiles of normal mucosa, and benign and malignant colorectal tumors identify early onset markers. Molecular Cancer, 2008, 7, 94.	7.9	102
82	Hypermethylated MAL gene – a silent marker of early colon tumorigenesis. Journal of Translational Medicine, 2008, 6, 13.	1.8	48
83	Systematic bioinformatic analysis of expression levels of 17,330 human genes across 9,783 samples from 175 types of healthy and pathological tissues. Genome Biology, 2008, 9, R139.	13.9	234
84	Array-Based Comparative Genomic Hybridization in Prostate Cancer: Research and Clinical Applications. , 2008, , 415-429.		0
85	Alternative splicing in cancer: Noise, functional, or systematic?. International Journal of Biochemistry and Cell Biology, 2007, 39, 1432-1449.	1.2	178
86	Gene expression profiles of primary colorectal carcinomas, liver metastases, and carcinomatoses. Molecular Cancer, 2007, 6, 2.	7.9	61
87	Improved gene expression signature of testicular carcinoma in situ. Journal of Developmental and Physical Disabilities, 2007, 30, 292-303.	3.6	47
88	The epigenome of testicular germ cell tumors. Apmis, 2007, 115, 1147-1160.	0.9	61
89	TMPRSS2 Fusions with Oncogenic ETS Factors in Prostate Cancer Involve Unbalanced Genomic Rearrangements and Are Associated with HDAC1 and Epigenetic Reprogramming. Cancer Research, 2006, 66, 10242-10246.	0.4	209
90	Precursor lesions in testis and dysgenetic gonads. Human Pathology, 2006, 37, 773.	1.1	1

#	Article	IF	CITATIONS
91	Novel Genomic Aberrations in Testicular Germ Cell Tumors by Array-CGH, and Associated Gene Expression Changes. Analytical Cellular Pathology, 2006, 28, 315-326.	0.7	54
92	Microinvasive germ cell tumor of the testis. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2005, 447, 610-625.	1.4	14
93	Identification of Two Molecular Groups of Seminomas by Using Expression and Tissue Microarrays. Clinical Cancer Research, 2005, 11, 5722-5729.	3.2	34
94	Differentiation of Human Embryonal Carcinomas In vitro and In vivo Reveals Expression Profiles Relevant to Normal Development. Cancer Research, 2005, 65, 5588-5598.	0.4	194
95	The loss of NKX3.1 expression in testicularand prostatecancers is not caused by promoter hypermethylation. Molecular Cancer, 2005, 4, 8.	7.9	8
96	Lack of parental origin specificity of altered alleles at 11p15 in testicular germ cell tumors. Cancer Genetics and Cytogenetics, 2003, 147, 1-8.	1.0	4
97	The testicular germ cell tumour genome. Apmis, 2003, 111, 136-151.	0.9	61
98	NKX3.1 Expression Is Lost in Testicular Germ Cell Tumors. American Journal of Pathology, 2003, 163, 2149-2154.	1.9	28
99	Candidate Genes for Testicular Cancer Evaluated by In Situ Protein Expression Analyses on Tissue Microarrays. Neoplasia, 2003, 5, 397-404.	2.3	46
100	Topoisomerase-IIα Is Upregulated in Malignant Peripheral Nerve Sheath Tumors and Associated With Clinical Outcome. Journal of Clinical Oncology, 2003, 21, 4586-4591.	0.8	74
101	Genome profiles of familial/bilateral and sporadic testicular germ cell tumors. Genes Chromosomes and Cancer, 2002, 34, 168-174.	1.5	77
102	New insights into testicular germ cell tumorigenesis from gene expression profiling. Cancer Research, 2002, 62, 2359-64.	0.4	134
103	Familial/Bilateral and Sporadic Testicular Germ Cell Tumors Show Frequent Genetic Changes at Loci with Suggestive Linkage Evidence. Neoplasia, 2001, 3, 196-203.	2.3	27
104	Evaluation of loss of heterozygosity/allelic imbalance scoring in tumor DNA. Cancer Genetics and Cytogenetics, 2001, 127, 64-70.	1.0	73