
## **Carsten Schmuck**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/508103/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | How to improve guanidinium cations for oxoanion binding in aqueous solution?. Coordination Chemistry Reviews, 2006, 250, 3053-3067.                                                                                                          | 9.5 | 193       |
| 2  | Highly Stable Self-Assembly in Water:Â Ion Pair Driven Dimerization of a Guanidiniocarbonyl Pyrrole<br>Carboxylate Zwitterion. Journal of the American Chemical Society, 2003, 125, 452-459.                                                 | 6.6 | 190       |
| 3  | Peptide Functionalized Polydiacetylene Liposomes Act as a Fluorescent Turn-On Sensor for Bacterial<br>Lipopolysaccharide. Journal of the American Chemical Society, 2011, 133, 9720-9723.                                                    | 6.6 | 175       |
| 4  | Carboxylate Binding by 2-(Guanidiniocarbonyl)pyrrole Receptors in Aqueous Solvents: Improving the<br>Binding Properties of Guanidinium Cations through Additional Hydrogen Bonds. Chemistry - A<br>European Journal, 2000, 6, 709-718.       | 1.7 | 168       |
| 5  | A Molecular Flytrap for the Selective Binding of Citrate and Other Tricarboxylates in Water. Journal of the American Chemical Society, 2005, 127, 3373-3379.                                                                                 | 6.6 | 157       |
| 6  | A Molecular Peptide Beacon for the Ratiometric Sensing of Nucleic Acids. Journal of the American Chemical Society, 2012, 134, 1958-1961.                                                                                                     | 6.6 | 146       |
| 7  | Dipeptide Binding in Water by a de Novo Designed Guanidiniocarbonylpyrrole Receptor. Journal of the<br>American Chemical Society, 2004, 126, 8898-8899.                                                                                      | 6.6 | 106       |
| 8  | A Tailorâ€Made Specific Anionâ€Binding Motif in the Side Chain Transforms a Tetrapeptide into an Efficient<br>Vector for Gene Delivery. Angewandte Chemie - International Edition, 2015, 54, 2941-2944.                                      | 7.2 | 94        |
| 9  | Side chain selective binding of N-acetyl-α-amino acid carboxylates by a 2-(guanidiniocarbonyl)pyrrole<br>receptor in aqueous solvents. Chemical Communications, 1999, , 843-844.                                                             | 2.2 | 78        |
| 10 | A Supramolecular Gel from a Quadruple Zwitterion that Responds to Both Acid and Base. Angewandte<br>Chemie - International Edition, 2013, 52, 12550-12554.                                                                                   | 7.2 | 72        |
| 11 | Incorporation of a Nonâ€Natural Arginine Analogue into a Cyclic Peptide Leads to Formation of<br>Positively Charged Nanofibers Capable of Gene Transfection. Angewandte Chemie - International<br>Edition, 2016, 55, 598-601.                | 7.2 | 69        |
| 12 | "Knock-Out―Analogues as a Tool to Quantify Supramolecular Processes: A Theoretical Study of<br>Molecular Interactions in Guanidiniocarbonyl Pyrrole Carboxylate Dimers. Journal of the American<br>Chemical Society, 2005, 127, 11115-11124. | 6.6 | 67        |
| 13 | From Supramolecular Vesicles to Micelles: Controllable Construction of Tumorâ€Targeting<br>Nanocarriers Based on Host–Guest Interaction between a Pillar[5]areneâ€Based Prodrug and a<br>RGDâ€Sulfonate Guest. Small, 2018, 14, e1803952.    | 5.2 | 67        |
| 14 | Highly Stable Self-Association of 5-(Guanidiniocarbonyl)-1H-pyrrole-2-carboxylate in DMSO – The<br>Importance of Electrostatic Interactions. European Journal of Organic Chemistry, 1999, 1999,<br>2397-2403.                                | 1.2 | 65        |
| 15 | Nucleotide Recognition in Water by a Guanidiniumâ€Based Artificial Tweezer Receptor. Chemistry - A<br>European Journal, 2011, 17, 5311-5318.                                                                                                 | 1.7 | 62        |
| 16 | Cooperative Self-Assembly of Discoid Dimers: Hierarchical Formation of Nanostructures with a pH<br>Switch. Journal of the American Chemical Society, 2013, 135, 8342-8349.                                                                   | 6.6 | 62        |
| 17 | Nâ€~-Alkylated Guanidiniocarbonyl Pyrroles:  New Receptors for Amino Acid Recognition in Water.<br>Organic Letters, 2003, 5, 4579-4581.                                                                                                      | 2.4 | 59        |
| 18 | lon Pair Driven Self-Assembly of a Flexible Bis-Zwitterion in Polar Solution:Â Formation of Discrete<br>Nanometer-Sized Cyclic Dimers. Journal of the American Chemical Society, 2006, 128, 1430-1431.                                       | 6.6 | 57        |

| #  | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Recognition of Anionic Carbohydrates by an Artificial Receptor in Water. Organic Letters, 2005, 7,<br>3517-3520.                                                                                                                                                              | 2.4 | 56        |
| 20 | Efficient Complexation ofN-Acetyl Amino Acid Carboxylates in Water by an Artificial Receptor:Â<br>Unexpected Cooperativity in the Binding of Glutamate but Not Aspartate. Journal of the American<br>Chemical Society, 2005, 127, 10486-10487.                                | 6.6 | 56        |
| 21 | A metal-free fluorescence turn-on molecular probe for detection of nucleoside triphosphates.<br>Chemical Communications, 2017, 53, 208-211.                                                                                                                                   | 2.2 | 53        |
| 22 | Direct experimental observation of the aggregation of α-amino acids into 100–200 nm clusters in aqueous solution. RSC Advances, 2012, 2, 4690.                                                                                                                                | 1.7 | 44        |
| 23 | A Facile and Efficient Multiâ€Gram Synthesis of <i>N</i> â€Protected<br>5â€(Guanidinocarbonyl)â€1 <i>H</i> â€pyrroleâ€2â€carboxylic Acids. European Journal of Organic Chemistry,<br>2008, 2008, 324-329.                                                                     | 1.2 | 43        |
| 24 | Charge Interactions Do the Job: A Combined Statistical and Combinatorial Approach to Finding<br>Artificial Receptors for Binding Tetrapeptides in Water. Angewandte Chemie - International Edition,<br>2005, 44, 7208-7212.                                                   | 7.2 | 42        |
| 25 | Utilizing Combinatorial Chemistry and Rational Design: Peptidic Tweezers with Nanomolar Affinity to<br>DNA Can Be Transformed into Efficient Vectors for Gene Delivery by Addition of a Lipophilic Tail.<br>Angewandte Chemie - International Edition, 2013, 52, 14016-14020. | 7.2 | 42        |
| 26 | A Tailorâ€Made Specific Anionâ€Binding Motif in the Side Chain Transforms a Tetrapeptide into an Efficient<br>Vector for Gene Delivery. Angewandte Chemie, 2015, 127, 2984-2987.                                                                                              | 1.6 | 40        |
| 27 | Morphologyâ€Dependent Cell Imaging by Using a Selfâ€Assembled Diacetylene Peptide Amphiphile.<br>Angewandte Chemie - International Edition, 2017, 56, 14526-14530.                                                                                                            | 7.2 | 40        |
| 28 | Non-viral transfection vectors: are hybrid materials the way forward?. MedChemComm, 2019, 10, 1692-1718.                                                                                                                                                                      | 3.5 | 40        |
| 29 | Guanidiniocarbonylpyrrole–Aryl Derivatives: Structure Tuning for Spectrophotometric Recognition<br>of Specific DNA and RNA Sequences and for Antiproliferative Activity. Chemistry - A European Journal,<br>2010, 16, 3036-3056.                                              | 1.7 | 38        |
| 30 | pHâ€Switchable Vesicles from a Serineâ€Derived Guanidiniocarbonyl Pyrrole Carboxylate Zwitterion in<br>DMSO. Angewandte Chemie - International Edition, 2010, 49, 8747-8750.                                                                                                  | 7.2 | 36        |
| 31 | Diverse Properties of Guanidiniocarbonyl Pyrrole-Based Molecules: Artificial Analogues of Arginine.<br>Accounts of Chemical Research, 2019, 52, 1709-1720.                                                                                                                    | 7.6 | 36        |
| 32 | Multi-Stimuli-Responsive Supramolecular Polymers Based on Noncovalent and Dynamic Covalent<br>Bonds. ACS Applied Materials & Interfaces, 2020, 12, 2107-2115.                                                                                                                 | 4.0 | 34        |
| 33 | Efficient gene delivery into cells by a surprisingly small three-armed peptide ligand. Chemical Science, 2012, 3, 996.                                                                                                                                                        | 3.7 | 32        |
| 34 | A dual pH-responsive supramolecular gelator with aggregation-induced emission properties. Soft<br>Matter, 2018, 14, 6166-6170.                                                                                                                                                | 1.2 | 32        |
| 35 | A novel pyrene-guanidiniocarbonyl-pyrrole cation efficiently differentiates between ds-DNA and<br>ds-RNA by two independent, sensitive spectroscopic methods. Bioorganic and Medicinal Chemistry<br>Letters, 2008, 18, 2977-2981.                                             | 1.0 | 30        |
| 36 | Impact of Modified Silica Beads on Methane Hydrate Formation in a Fixed-Bed Reactor. Industrial &<br>Engineering Chemistry Research, 2019, 58, 16687-16695.                                                                                                                   | 1.8 | 30        |

| #  | Article                                                                                                                                                                                                                                    | IF     | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| 37 | Discovery of potent inhibitors of human β-tryptase from pre-equilibrated dynamic combinatorial<br>libraries. Chemical Science, 2015, 6, 1792-1800.                                                                                         | 3.7    | 29        |
| 38 | Transforming polyethylenimine into a pH-switchable hydrogel by additional supramolecular interactions. Chemical Communications, 2014, 50, 10464.                                                                                           | 2.2    | 28        |
| 39 | A Branched Tripeptide with an Anionâ€Binding Motif as a New Delivery Carrier for Efficient Gene<br>Transfection. ChemBioChem, 2019, 20, 1410-1416.                                                                                         | 1.3    | 28        |
| 40 | Reversible and Noncompetitive Inhibition of βâ€Tryptase by Protein Surface Binding of Tetravalent Peptide<br>Ligands Identified from a Combinatorial Split–Mix Library. Angewandte Chemie - International Edition,<br>2010, 49, 4113-4116. | 7.2    | 26        |
| 41 | Interactions of Multicationic Bis(guanidiniocarbonylpyrrole) Receptors with Double‧tranded<br>Nucleic Acids: Syntheses, Binding Studies, and Atomic Force Microscopy Imaging. Chemistry - A<br>European Journal, 2012, 18, 1352-1363.      | 1.7    | 26        |
| 42 | Design and synthesis of a new class of arginine analogues with an improved anion binding site in the side chain. Chemical Communications, 2005, , 772.                                                                                     | 2.2    | 25        |
| 43 | Screening of a Combinatorial Library Reveals Peptide-Based Catalysts for Phosphorester Cleavage in<br>Water. Organic Letters, 2007, 9, 5389-5392.                                                                                          | 2.4    | 24        |
| 44 | Development of a Surfaceâ€Active Coating for Promoted Gas Hydrate Formation.<br>Chemie-Ingenieur-Technik, 2019, 91, 85-91.                                                                                                                 | 0.4    | 24        |
| 45 | Fluorescent Peptide Beacons for the Selective Ratiometric Detection of Heparin. Chemistry - A<br>European Journal, 2016, 22, 13156-13161.                                                                                                  | 1.7    | 22        |
| 46 | Use of an Octapeptide–Guanidiniocarbonylpyrrole Conjugate for the Formation of a Supramolecular<br>βâ€Helix that Selfâ€Assembles into pHâ€Responsive Fibers. Angewandte Chemie - International Edition, 2016, 55<br>13015-13018.           | 5, 7.2 | 22        |
| 47 | Norbornane-based cationic antimicrobial peptidomimetics targeting the bacterial membrane. European<br>Journal of Medicinal Chemistry, 2018, 160, 9-22.                                                                                     | 2.6    | 22        |
| 48 | Formation of Twisted βâ€Sheet Tapes from a Selfâ€Complementary Peptide Based on Novel Pillarareneâ€GCP<br>Host–Guest Interaction with Gene Transfection Properties. Chemistry - A European Journal, 2018, 24,<br>9754-9759.                | 1.7    | 22        |
| 49 | Cancer ell‧pecific Drug Delivery by a Tumorâ€Homing CPPâ€Gossypol Conjugate Employing a Tracelessly<br>Cleavable Linker. Chemistry - A European Journal, 2020, 26, 3010-3015.                                                              | 1.7    | 22        |
| 50 | Downsizing of Enzymes by Chemical Methods: Arginine Mimics with Low p <i>K</i> <sub>a</sub> â€Values<br>Increase the Rates of Hydrolysis of RNA Model Compounds. Angewandte Chemie - International Edition,<br>2009, 48, 6722-6725.        | 7.2    | 21        |
| 51 | A new approach to inhibit human β-tryptase by protein surface binding of four-armed peptide ligands with two different sets of arms. Organic and Biomolecular Chemistry, 2013, 11, 1631.                                                   | 1.5    | 21        |
| 52 | UV resonance Raman spectroscopic monitoring of supramolecular complex formation: peptide recognition in aqueous solution. Physical Chemistry Chemical Physics, 2007, 9, 4598.                                                              | 1.3    | 20        |
| 53 | Hydrolytic activity of histidine-containing octapeptides in water identified by quantitative screening of a combinatorial library. Organic and Biomolecular Chemistry, 2009, 7, 4362.                                                      | 1.5    | 20        |
| 54 | Preparation and antimalarial activity of a novel class of carbohydrate-derived, fused thiochromans.<br>European Journal of Medicinal Chemistry, 2014, 87, 197-202.                                                                         | 2.6    | 19        |

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | DNA/RNA recognition controlled by the glycine linker and the guanidine moiety of phenanthridine peptides. International Journal of Biological Macromolecules, 2019, 134, 422-434.                                                                           | 3.6 | 19        |
| 56 | Functional Disruption of the Cancerâ€Relevant Interaction between Survivin and Histone H3 with a<br>Guanidiniocarbonyl Pyrrole Ligand. Angewandte Chemie - International Edition, 2020, 59, 5567-5571.                                                      | 7.2 | 19        |
| 57 | A FRET-enabled molecular peptide beacon with a significant red shift for the ratiometric detection of nucleic acids. Chemical Communications, 2016, 52, 6134-6137.                                                                                          | 2.2 | 18        |
| 58 | Twoâ€Component Selfâ€Assembly: Hierarchical Formation of pHâ€Switchable Supramolecular Networks by<br>ï€â€"ï€ Induced Aggregation of Ion Pairs. Chemistry - A European Journal, 2016, 22, 15242-15247.                                                      | 1.7 | 18        |
| 59 | A Selective Cucurbit[8]urilâ€Peptide Beacon Ensemble for the Ratiometric Fluorescence Detection of<br>Peptides. Chemistry - A European Journal, 2019, 25, 13088-13093.                                                                                      | 1.7 | 18        |
| 60 | Chapter 8. Synthetic Receptors for Amino Acids and Peptides. Monographs in Supramolecular Chemistry, 2015, , 326-368.                                                                                                                                       | 0.2 | 18        |
| 61 | Site-specific pKa determination of the carboxylate-binding subunit in artificial peptide receptors.<br>Chemical Communications, 2010, 46, 2133.                                                                                                             | 2.2 | 17        |
| 62 | Quantitative label-free monitoring of peptide recognition by artificial receptors: a comparative FT-IR and UV resonance Raman spectroscopic study. Chemical Science, 2012, 3, 3371.                                                                         | 3.7 | 17        |
| 63 | Dual pHâ€Induced Reversible Selfâ€Assembly of Gold Nanoparticles by Surface Functionalization with<br>Zwitterionic Ligands. Small, 2020, 16, e2001044.                                                                                                      | 5.2 | 17        |
| 64 | Characterization of guanidiniocarbonyl pyrroles in water by pH-dependent UV Raman spectroscopy and component analysis. Physical Chemistry Chemical Physics, 2008, 10, 6770.                                                                                 | 1.3 | 16        |
| 65 | Guanidiniocarbonyl pyrrole (GCP) conjugated PAMAM-G2, a highly efficient vector for gene delivery: the importance of DNA condensation. Chemical Communications, 2016, 52, 12446-12449.                                                                      | 2.2 | 15        |
| 66 | pH ontrolled Formation of a Stable βâ€Sheet and Amyloidâ€like Fibers from an Amphiphilic Peptide: The<br>Importance of a Tailorâ€Made Binding Motif for Secondary Structure Formation. Angewandte Chemie -<br>International Edition, 2016, 55, 15287-15291. | 7.2 | 15        |
| 67 | Efficient Gene Transfection through Inhibition of βâ€5heet (Amyloid Fiber) Formation of a Short<br>Amphiphilic Peptide by Gold Nanoparticles. Angewandte Chemie - International Edition, 2017, 56,<br>8083-8088.                                            | 7.2 | 15        |
| 68 | Rational Design, Binding Studies, and Crystalâ€Structure Evaluation of the First Ligand Targeting the<br>Dimerization Interface of the 14â€3â€3ζ Adapter Protein. ChemBioChem, 2018, 19, 591-595.                                                           | 1.3 | 15        |
| 69 | A Supramolecular Stabilizer of the 14â€3â€3î¶/ERα Proteinâ€Protein Interaction with a Synergistic Mode of<br>Action. Angewandte Chemie - International Edition, 2020, 59, 5284-5287.                                                                        | 7.2 | 15        |
| 70 | A Systematic Structure–Activity Study of a New Type of Small Peptidic Transfection Vector Reveals the<br>Importance of a Special Oxoâ€Anionâ€Binding Motif for Gene Delivery. ChemBioChem, 2017, 18, 2268-2279.                                             | 1.3 | 14        |
| 71 | Quantitative, label-free and site-specific monitoring of molecular recognition: a multivariate resonance Raman approach. Chemical Communications, 2011, 47, 568-570.                                                                                        | 2.2 | 13        |
| 72 | Guanidiniocarbonyl-pyrrole-aryl conjugates as inhibitors of human dipeptidyl peptidase III: combined experimental and computational study. RSC Advances, 2016, 6, 83044-83052.                                                                              | 1.7 | 13        |

| #  | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Multivalent Ligands with Tailorâ€Made Anion Binding Motif as Stabilizers of Protein–Protein<br>Interactions. ChemBioChem, 2019, 20, 2921-2926.                                                                                                                     | 1.3 | 13        |
| 74 | Peptideâ€Based Probes with an Artificial Anionâ€Binding Motif for Direct Fluorescence "Switchâ€On―<br>Detection of Nucleic Acid in Cells. Chemistry - A European Journal, 2017, 23, 17356-17362.                                                                   | 1.7 | 12        |
| 75 | A new class of supramolecular ligands stabilizes 14-3-3 protein–protein interactions by up to two<br>orders of magnitude. Chemical Communications, 2019, 55, 111-114.                                                                                              | 2.2 | 11        |
| 76 | Arginine mimetic appended peptide-based probes for fluorescence turn-on detection of 14-3-3 proteins.<br>Organic and Biomolecular Chemistry, 2019, 17, 4359-4363.                                                                                                  | 1.5 | 11        |
| 77 | Two-component self-assembly of a tetra-guanidiniocarbonyl pyrrole cation and Na <sub>4</sub> EDTA:<br>formation of pH switchable supramolecular networks. Chemical Communications, 2015, 51,<br>16065-16067.                                                       | 2.2 | 9         |
| 78 | Introduction of a tailor made anion receptor into the side chain of small peptides allows fine-tuning<br>the thermodynamic signature of peptide–DNA binding. Organic and Biomolecular Chemistry, 2016, 14,<br>8800-8803.                                           | 1.5 | 9         |
| 79 | Use of an Octapeptide–Guanidiniocarbonylpyrrole Conjugate for the Formation of a Supramolecular<br>βâ€Helix that Selfâ€Assembles into pHâ€Responsive Fibers. Angewandte Chemie, 2016, 128, 13209-13212.                                                            | 1.6 | 9         |
| 80 | Morphologyâ€Dependent Cell Imaging by Using a Selfâ€Assembled Diacetylene Peptide Amphiphile.<br>Angewandte Chemie, 2017, 129, 14718-14722.                                                                                                                        | 1.6 | 9         |
| 81 | Nucleobase–Guanidiniocarbonyl-Pyrrole Conjugates as Novel Fluorimetric Sensors for Single<br>Stranded RNA. Molecules, 2017, 22, 2213.                                                                                                                              | 1.7 | 9         |
| 82 | A stimuli responsive two component supramolecular hydrogelator with aggregation-induced emission properties. Soft Matter, 2019, 15, 7117-7121.                                                                                                                     | 1.2 | 9         |
| 83 | pH ontrolled Formation of a Stable βâ€Sheet and Amyloidâ€like Fibers from an Amphiphilic Peptide: The<br>Importance of a Tailorâ€Made Binding Motif for Secondary Structure Formation. Angewandte Chemie,<br>2016, 128, 15513-15517.                               | 1.6 | 8         |
| 84 | Dimensional control of supramolecular assemblies of diacetylene-derived peptide gemini amphiphile:<br>from spherical micelles to foamlike networks. Soft Matter, 2018, 14, 5565-5571.                                                                              | 1.2 | 8         |
| 85 | Incorporation of arginine mimetic residue into peptides for recognition of double stranded nucleic acid structure: Binding and aggregation studies. Bioorganic and Medicinal Chemistry, 2017, 25, 1875-1880.                                                       | 1.4 | 7         |
| 86 | A dipeptide with enhanced anion binding affinity enables cell uptake and protein delivery. Organic and<br>Biomolecular Chemistry, 2018, 16, 2312-2317.                                                                                                             | 1.5 | 7         |
| 87 | Water-Soluble, pH Responsive Polymeric Nanoparticles: A Modular Approach. ACS Applied Polymer<br>Materials, 2020, 2, 2499-2503.                                                                                                                                    | 2.0 | 7         |
| 88 | Selfâ€Assembly of a Tripodal Triszwitterion Forms a pH‣witchable Hydrogel that Can Reversibly<br>Encapsulate Hydrophobic Guests in Water. Chemistry - A European Journal, 2017, 23, 320-326.                                                                       | 1.7 | 6         |
| 89 | Locating Large, Flexible Ligands on Proteins. Journal of Chemical Information and Modeling, 2018, 58, 315-327.                                                                                                                                                     | 2.5 | 6         |
| 90 | Molecular recognition of carboxylates in the protein leucine zipper by a multivalent supramolecular<br>ligand: residue-specific, sensitive and label-free probing by UV resonance Raman spectroscopy. Physical<br>Chemistry Chemical Physics, 2018, 20, 1817-1820. | 1.3 | 6         |

| #   | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Fluorescent cyanine-guanidiniocarbonyl-pyrrole conjugate with pH-dependent DNA/RNA recognition<br>and DPP III fluorescent labelling and inhibition properties. Monatshefte Für Chemie, 2018, 149, 1307-1313.                                  | 0.9 | 6         |
| 92  | Hierarchical self-assembly of a small monomer with two orthogonal binding sites: from discrete<br>hexagonal containers to a stimuli-responsive supramolecular gel. Supramolecular Chemistry, 2018, 30,<br>395-403.                            | 1.5 | 6         |
| 93  | The guanidiniocarbonylpyrrole–fluorophore conjugates as theragnostic tools for dipeptidyl<br>peptidase III monitoring and inhibition. Journal of Biomolecular Structure and Dynamics, 2020, 38,<br>3790-3800.                                 | 2.0 | 5         |
| 94  | Smart Glycopolymeric Nanoparticles for Multivalent Lectin Binding and Stimuli-Controlled Guest<br>Release. Biomacromolecules, 2020, 21, 2356-2364.                                                                                            | 2.6 | 5         |
| 95  | Fluorimetric and CD Recognition between Various ds-DNA/RNA Depends on a Cyanine Connectivity in<br>Cyanine-guanidiniocarbonyl-pyrrole Conjugate. Molecules, 2020, 25, 4470.                                                                   | 1.7 | 4         |
| 96  | Advances towards Cell Specific Gene Transfection – A Small Molecule Approach Allows for Order of<br>Magnitude Selectivity. Chemistry - A European Journal, 0, , .                                                                             | 1.7 | 4         |
| 97  | Force field-based conformational searches: efficiency and performance for peptide receptor complexes. Molecular Physics, 2013, 111, 2489-2500.                                                                                                | 0.8 | 3         |
| 98  | Guanidiniocarbonyl Pyrrole Cation (GCP) – A New Guest for Cucurbit[8]uril: Application to the<br>Synthesis of Supramolecular Polymers Based on CB[8]@2GCP Complex Formation. European Journal of<br>Organic Chemistry, 2018, 2018, 6515-6518. | 1.2 | 3         |
| 99  | A Metallosupramolecular Coordination Polymer for the â€~Turnâ€on' Fluorescence Detection of<br>Hydrogen Sulfide. ChemistryOpen, 2020, 9, 786-792.                                                                                             | 0.9 | 3         |
| 100 | Funktionelle Inhibition der krebsrelevanten Interaktion von Survivin und Histon H3 mit einem<br>Guanidiniumcarbonylpyrrol‣iganden. Angewandte Chemie, 2020, 132, 5614-5619.                                                                   | 1.6 | 3         |
| 101 | Selective Disruption of Survivin's Proteinâ€Protein Interactions: A Supramolecular Approach Based on<br>Guanidiniocarbonylpyrrole. ChemBioChem, 2022, , e202100618.                                                                           | 1.3 | 3         |
| 102 | Efficient Gene Transfection through Inhibition of βâ€Sheet (Amyloid Fiber) Formation of a Short<br>Amphiphilic Peptide by Gold Nanoparticles. Angewandte Chemie, 2017, 129, 8195-8200.                                                        | 1.6 | 2         |
| 103 | Formation of Polymeric Particles by Direct Polymerization on the Surface of a Supramolecular<br>Template. Chemistry - A European Journal, 2018, 24, 9061-9065.                                                                                | 1.7 | 2         |
| 104 | Structure optimization of lipopeptide assemblies for aldol reactions in an aqueous medium. Physical<br>Chemistry Chemical Physics, 2021, 23, 10953-10963.                                                                                     | 1.3 | 2         |
| 105 | An inverted supramolecular amphiphile and its step-wise self-assembly into vesicular networks. Soft<br>Matter, 2017, 13, 8108-8112.                                                                                                           | 1.2 | 1         |
| 106 | Naphthalene diimide bis-guanidinio-carbonyl-pyrrole as a pH-switchable threading DNA intercalator.<br>Beilstein Journal of Organic Chemistry, 2020, 16, 2201-2211.                                                                            | 1.3 | 1         |
| 107 | Supramolecular polymers with reversed viscosity/temperature profile for application in motor oils.<br>Beilstein Journal of Organic Chemistry, 2021, 17, 105-114.                                                                              | 1.3 | 1         |
| 108 | Advances towards Cellâ€Specific Gene Transfection: A Smallâ€Molecule Approach Allows<br>Orderâ€ofâ€Magnitude Selectivity. Chemistry - A European Journal, 0, , .                                                                              | 1.7 | 1         |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | A Supramolecular Stabilizer of the 14â€3â€3ζ/ERα Proteinâ€Protein Interaction with a Synergistic Mode of<br>Action. Angewandte Chemie, 2020, 132, 5322-5325.                                             | 1.6 | 0         |
| 110 | Front Cover: Advances towards Cell‧pecific Gene Transfection: A Smallâ€Molecule Approach Allows<br>Orderâ€ofâ€Magnitude Selectivity (Chem. Eur. J. 43/2022). Chemistry - A European Journal, 2022, 28, . | 1.7 | 0         |