
Sébastien Viscardy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5080889/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	No detection of methane on Mars from early ExoMars Trace Gas Orbiter observations. Nature, 2019, 568, 517-520.	13.7	111
2	Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature, 2019, 568, 521-525.	13.7	107
3	NOMAD, an Integrated Suite of Three Spectrometers for the ExoMars Trace Gas Mission: Technical Description, Science Objectives and Expected Performance. Space Science Reviews, 2018, 214, 1.	3.7	95
4	Water Vapor Vertical Profiles on Mars in Dust Storms Observed by TGO/NOMAD. Journal of Geophysical Research E: Planets, 2019, 124, 3482-3497.	1.5	88
5	4D-Var assimilation of MIPAS chemical observations: ozone and nitrogen dioxide analyses. Atmospheric Chemistry and Physics, 2008, 8, 6169-6187.	1.9	84
6	Independent confirmation of a methane spike on Mars and a source region east of Gale Crater. Nature Geoscience, 2019, 12, 326-332.	5.4	63
7	Explanation for the Increase in Highâ€Altitude Water on Mars Observed by NOMAD During the 2018 Global Dust Storm. Geophysical Research Letters, 2020, 47, e2019GL084354.	1.5	62
8	Mars atmospheric chemistry simulations with the GEM-Mars general circulation model. Icarus, 2019, 326, 197-224.	1.1	52
9	Methane on Mars and Habitability: Challenges and Responses. Astrobiology, 2018, 18, 1221-1242.	1.5	50
10	Transport and Helfand moments in the Lennard-Jones fluid. I. Shear viscosity. Journal of Chemical Physics, 2007, 126, 184512.	1.2	41
11	Transport and Helfand moments in the Lennard-Jones fluid. II. Thermal conductivity. Journal of Chemical Physics, 2007, 126, 184513.	1.2	34
12	Water heavily fractionated as it ascends on Mars as revealed by ExoMars/NOMAD. Science Advances, 2021, 7, .	4.7	31
13	Comprehensive investigation of Mars methane and organics with ExoMars/NOMAD. Icarus, 2021, 357, 114266.	1.1	27
14	Viscosity in molecular dynamics with periodic boundary conditions. Physical Review E, 2003, 68, 041204.	0.8	24
15	Formation of layers of methane in the atmosphere of Mars after surface release. Geophysical Research Letters, 2016, 43, 1868-1875.	1.5	20
16	Viscosity in the escape-rate formalism. Physical Review E, 2003, 68, 041205.	0.8	19
17	Evaluation of Ozone Analyses From UARS MLS Assimilation by BASCOE Between 1992 and 1997. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3, 190-202.	2.3	19
18	The 2009 stratospheric major warming described from synergistic use of BASCOE water vapour analyses and MLS observations. Atmospheric Chemistry and Physics, 2011, 11, 4689-4703.	1.9	18

#	Article	IF	CITATIONS
19	Annual Appearance of Hydrogen Chloride on Mars and a Striking Similarity With the Water Vapor Vertical Distribution Observed by TGO/NOMAD. Geophysical Research Letters, 2021, 48, e2021GL092506.	1.5	15
20	Explaining NOMAD D/H Observations by Cloudâ€Induced Fractionation of Water Vapor on Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	11
21	Ground-based infrared mapping of H ₂ O ₂ on Mars near opposition. Astronomy and Astrophysics, 2019, 627, A60.	2.1	8
22	Impact of gradients at the martian terminator on the retrieval of ozone from SPICAM/MEx. Icarus, 2021, 353, 113598.	1.1	8
23	Probing the Atmospheric Cl Isotopic Ratio on Mars: Implications for Planetary Evolution and Atmospheric Chemistry. Geophysical Research Letters, 2021, 48, e2021GL092650.	1.5	7
24	Planetâ€Wide Ozone Destruction in the Middle Atmosphere on Mars During Global Dust Storm. Geophysical Research Letters, 2022, 49, .	1.5	7
25	A simple framework for modelling the photochemical response to solar spectral irradiance variability in the stratosphere. Atmospheric Chemistry and Physics, 2012, 12, 7707-7724.	1.9	5
26	Calibration of the NOMAD-UVIS data. Planetary and Space Science, 2022, 218, 105504.	0.9	5