OlÃ-mpio H Miyagaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5080724/publications.pdf

Version: 2024-02-01

64 papers

1,526 citations

430843 18 h-index 315719 38 g-index

65 all docs

65 docs citations

65 times ranked 406 citing authors

#	Article	IF	Citations
1	Existence and nonexistence results for a class of Hamiltonian Choquard-type elliptic systems with lower critical growth on â, < sup>2. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2022, 152, 1383-1410.	1.2	5
2	Multiplicity results for elliptic problems involving nonlocal integrodifferential operators without Ambrosetti-Rabinowitz condition. Discrete and Continuous Dynamical Systems, 2022, 42, 3329.	0.9	2
3	Normalized solutions for a Schr $ ilde{A}\P$ dinger equation with critical growth in \$\${mathbb {R}}^{N}\$\$. Calculus of Variations and Partial Differential Equations, 2022, 61, 1.	1.7	41
4	Critical fractional elliptic equations with exponential growth. Journal of Elliptic and Parabolic Equations, 2021, 7, 75-99.	0.9	2
5	Existence and multiplicity of solutions for the fractional <i>p</i> -Laplacian Choquard logarithmic equation involving a nonlinearity with exponential critical and subcritical growth. Journal of Mathematical Physics, 2021, 62, .	1.1	7
6	A CLASS OF CRITICAL KIRCHHOFF PROBLEM ON THE HYPERBOLIC SPACE. Glasgow Mathematical Journal, 2020, 62, 109-122.	0.3	4
7	On a class of Hamiltonian Choquard-type elliptic systems. Journal of Mathematical Physics, 2020, 61, .	1.1	3
8	Existence and Concentration of Solutions for a Class of Elliptic Kirchhoff–Schrödinger Equations with Subcritical and Critical Growth. Milan Journal of Mathematics, 2020, 88, 385-407.	1.1	1
9	Schr $ ilde{A}$ ¶dinger equations involving fractional p-Laplacian with supercritical exponent. Complex Variables and Elliptic Equations, 2020, , 1-14.	0.8	O
10	A class of elliptic equations involving nonlocal integrodifferential operators with sign-changing weight functions. Journal of Mathematical Physics, 2020, 61, 051503.	1.1	5
11	A Fractional p-Laplacian Problem with Multiple Critical Hardy–Sobolev Nonlinearities. Milan Journal of Mathematics, 2020, 88, 65-97.	1.1	7
12	Remarks about a generalized pseudo-relativistic Hartree equation. Journal of Differential Equations, 2019, 266, 876-909.	2.2	7
13	Ground states of degenerate quasilinear Schr $ ilde{A}$ \P dinger equation with vanishing potentials. Nonlinear Analysis: Theory, Methods & Applications, 2019, 189, 111587.	1.1	2
14	Nonlocal Kirchhoff problems with Trudinger–Moser critical nonlinearities. Nonlinear Differential Equations and Applications, 2019, 26, 1.	0.8	16
15	Asymptotic behavior of ground states of generalized pseudo-relativistic Hartree equation. Asymptotic Analysis, 2019, , 1-27.	0.5	2
16	Existence of solution for a class of quasilinear Schrödinger equation inRNwith zero-mass. Journal of Mathematical Analysis and Applications, 2019, 477, 912-929.	1.0	4
17	Solitary waves for a class of generalized Kadomtsev-Petviashvili equation in RN with positive and zero mass. Journal of Mathematical Analysis and Applications, 2019, 477, 523-535.	1.0	9
18	The first eigenvalue for a quasilinear SchrĶdinger operator and its application. Applicable Analysis, 2018, 97, 499-512.	1.3	3

#	Article	IF	Citations
19	Existence and Multiplicity of Solutions for a Class of Elliptic Equations Without Ambrosetti–Rabinowitz Type Conditions. Journal of Dynamics and Differential Equations, 2018, 30, 405-432.	1.9	28
20	Singular nonhomogeneous quasilinear elliptic equations with a convection term. Mathematische Nachrichten, 2017, 290, 2280-2295.	0.8	1
21	Existence, regularity, and concentration phenomenon of nontrivial solitary waves for a class of generalized variable coefficient Kadomtsev-Petviashvili equation. Journal of Mathematical Physics, 2017, 58, .	1.1	6
22	Standing waves for a system of nonlinear Schr $\tilde{A}\P$ dinger equations in R N. Asymptotic Analysis, 2016, 96, 351-372.	0.5	1
23	Existence and concentration of solution for a class of fractional elliptic equation in $\$$ mathbb $\{R\}^N$ \$\$ R N via penalization method. Calculus of Variations and Partial Differential Equations, 2016, 55, 1.	1.7	105
24	Concentration Phenomena for Fractional Elliptic Equations Involving Exponential Critical Growth. Advanced Nonlinear Studies, 2016, 16, 843-861.	1.7	17
25	A class of nonlinear elliptic systems with Steklov-Neumann nonlinear boundary conditions. Rocky Mountain Journal of Mathematics, 2016, 46, .	0.4	3
26	On a Quasilinear SchrĶdinger Problem at Resonance. Advanced Nonlinear Studies, 2016, 16, 569-580.	1.7	3
27	Multiplicity of nonnegative solutions for quasilinear Schrödinger equations. Journal of Mathematical Analysis and Applications, 2016, 434, 939-955.	1.0	8
28	An example of noncontinuous attractors. Journal of Evolution Equations, 2015, 15, 979-1000.	1.1	0
29	Nonautonomous fractional problems with exponential growth. Nonlinear Differential Equations and Applications, 2015, 22, 1395-1410.	0.8	32
30	A Sign-Changing Solution for an Asymptotically Linear Schr \tilde{A} \P dinger Equation. Proceedings of the Edinburgh Mathematical Society, 2015, 58, 697-716.	0.3	12
31	Steklov-Neumann Eigenproblens: A Spectral Characterization of the Sobolev Trace Spaces. Milan Journal of Mathematics, 2015, 83, 177-198.	1.1	2
32	Nonlinear perturbations of a periodic SchrĶdinger equation with supercritical growth. Zeitschrift Fur Angewandte Mathematik Und Physik, 2015, 66, 2379-2394.	1.4	5
33	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll"> <mml:mrow><mml:mo><mml:mi>q<in<mml:math altimg="si2.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi< td=""><td>/mml:mi></td><td><mml:mo>)<</mml:mo></td></mml:mi<></mml:mrow></mml:msup></in<mml:math></mml:mi></mml:mo></mml:mrow>	/mml:mi>	<mml:mo>)<</mml:mo>
34	mathvariant="double-struck">R <mml:mrow> <mml:mi> <mml:mrow> <mml:m< td=""><td>1.4</td><td>2</td></mml:m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mi></mml:mrow>	1.4	2
35	Nonnegative solution for quasilinear Schr $\tilde{A}\P$ dinger equations that include supercritical exponents with nonlinearities that are indefinite in sign. Journal of Mathematical Analysis and Applications, 2015, 421, 643-655.	1.0	8
36	Quasilinear elliptic system in exterior domains with dependence on the gradient. Mathematische Nachrichten, 2014, 287, 361-373.	0.8	4

#	Article	IF	CITATIONS
37	Positive Solution for a Class of Degenerate Quasilinear Elliptic Equations in R N. Milan Journal of Mathematics, 2014, 82, 213-231.	1.1	8
38	Existence of solutions for a class of degenerate quasilinear elliptic equation in "Equation missing" No EquationSource Format="TEX", only image and EquationSource Format="MATHML" with vanishing potentials. Boundary Value Problems, 2013, 2013, .	0.7	6
39	Solution to biharmonic equation with vanishing potential. Illinois Journal of Mathematics, 2013, 57, .	0.1	5
40	Sobolev spaces of symmetric functions and applications. Journal of Functional Analysis, 2011, 261, 3735-3770.	1.4	40
41	A note on existence of antisymmetric solutions for a class of nonlinear Schr $ ilde{A}$ $ ilde{q}$ dinger equations. Zeitschrift Fur Angewandte Mathematik Und Physik, 2011, 62, 67-86.	1.4	4
42	On the existence and concentration of positive solutions to a class of quasilinear elliptic problems on documentclass{article}usepackage{amssymb}egin{document}pagestyle{empty}\$mathbb $\{R\}$ \$end{document}. Mathematische Nachrichten, 2011, 284, 1784-1795.	0.8	11
43	Soliton solutions for quasilinear Schr $\tilde{A}\P$ dinger equations with critical growth. Journal of Differential Equations, 2010, 248, 722-744.	2.2	146
44	Existence results for quasilinear elliptic exterior problems involving convection term and nonlinear Robin boundary conditions. Journal of Mathematical Analysis and Applications, 2010, 368, 578-586.	1.0	5
45	Multiple positive solutions for semilinear Dirichlet problems with sign-changing weight function in infinite strip domains. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71, 3434-3447.	1.1	8
46	On positive solution for a class of degenerate quasilinear elliptic positone/semipositone systems. Nonlinear Analysis: Theory, Methods & Applications, 2009, 70, 99-116.	1.1	4
47	Superlinear problems without Ambrosetti and Rabinowitz growth condition. Journal of Differential Equations, 2008, 245, 3628-3638.	2.2	177
48	Multiplicity of Nontrivial Solutions to a Problem Involving the Weighted p-Biharmonic Operator. Matematica Contemporanea, 2008, 36, .	0.0	0
49	Soliton Solutions to a Class of Quasilinear Elliptic Equations on â,,• Advanced Nonlinear Studies, 2007, 7, 579-597.	1.7	11
50	Subcritical perturbations of a singular quasilinear elliptic equation involving the critical Hardy–Sobolev exponent. Nonlinear Analysis: Theory, Methods & Applications, 2007, 66, 1351-1364.	1.1	27
51	Periodic solutions for extended Fisher–Kolmogorov and Swift–Hohenberg equations by truncature techniques. Nonlinear Analysis: Theory, Methods & Applications, 2007, 67, 3076-3083.	1.1	21
52	Soliton solutions for quasilinear SchrĶdinger equations: The critical exponential case. Nonlinear Analysis: Theory, Methods & Applications, 2007, 67, 3357-3372.	1,1	77
53	On positive solutions for a class of singular quasilinear elliptic systems. Journal of Mathematical Analysis and Applications, 2007, 334, 818-833.	1.0	31
54	Multiplicity results for equations with subcritical Hardy-Sobolev exponent and singularities on a half-space. Matematica Contemporanea, 2007, 32, .	0.0	0

#	Article	IF	CITATIONS
55	Multiplicity of solutions for critical singular problems. Applied Mathematics Letters, 2006, 19, 741-746.	2.7	9
56	On nonlinear perturbations of a periodic elliptic problem in involving critical growth. Nonlinear Analysis: Theory, Methods & Applications, 2004, 56, 781-791.	1.1	56
57	A class of elliptic systemsinvolving N-functions. Applied Mathematics Letters, 2004, 17, 1343-1348.	2.7	O
58	Existence of homoclinic orbits for asymptotically periodic systems involving Duffing-like equation. Applied Mathematics Letters, 2003, 16, 639-642.	2.7	60
59	Nontrivial Solutions of a Class of Quasilinear Elliptic Problems Involving Critical Exponents. , 2003, , 225-238.		3
60	Multiple positive solutions for semilinear elliptic equations in N involving subcritical exponents. Nonlinear Analysis: Theory, Methods & Applications, 1998, 32, 41-51.	1.1	21
61	Existence of positive bound states of nonlinear Schrödinger equations with saddle-like potential. Nonlinear Analysis: Theory, Methods & Applications, 1998, 34, 979-989.	1.1	23
62	Nontrivial Solutions for Perturbations of the p-Laplacian on Unbounded Domains. Journal of Mathematical Analysis and Applications, 1995, 193, 737-755.	1.0	65
63	Elliptic equations in R2 with nonlinearities in the critical growth range. Calculus of Variations and Partial Differential Equations, 1995, 3, 139-153.	1.7	325
64	On a class of degenerate quasilinear elliptic equations with zero mass. Complex Variables and Elliptic Equations, 0, , 1-28.	0.8	0