Petr Hellinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5080574/publications.pdf

Version: 2024-02-01

71102 123424 4,319 116 41 61 citations h-index g-index papers 129 129 129 1807 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	lon-scale Transition of Plasma Turbulence: Pressure–Strain Effect. Astrophysical Journal, 2022, 930, 48.	4.5	9
2	Scale dependence and cross-scale transfer of kinetic energy in compressible hydrodynamic turbulence at moderate Reynolds numbers. Physical Review Fluids, 2021 , 6 , .	2.5	4
3	Spectrum of kinetic plasma turbulence at 0.3–0.9 astronomical units from the Sun. Physical Review E, 2021, 103, 063202.	2.1	15
4	Proton Energization by Phase Steepening of Parallel-propagating Alfvénic Fluctuations. Astrophysical Journal Letters, 2021, 914, L36.	8.3	11
5	Spacetime Hall-MHD Turbulence at Sub-ion Scales: Structures or Waves?. Astrophysical Journal Letters, 2021, 917, L12.	8.3	9
6	Spectral Transfer and Kármán–Howarth–Monin Equations for Compressible Hall Magnetohydrodynamics. Astrophysical Journal, 2021, 917, 101.	4.5	12
7	First observations and performance of the RPW instrument on board the Solar Orbiter mission. Astronomy and Astrophysics, 2021, 656, A41.	5.1	9
8	Editorial: Advances in Space Plasma Turbulence: Theory and Observations. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	0
9	Properties of Hall-MHD Turbulence at Sub-lon Scales: Spectral Transfer Analysis. Atmosphere, 2021, 12, 1632.	2.3	4
10	Multidimensional Iterative Filtering: a new approach for investigating plasma turbulence in numerical simulations. Journal of Plasma Physics, 2020, 86, .	2.1	12
11	Fast Acceleration of Transrelativistic Electrons in Astrophysical Turbulence. Astrophysical Journal, 2020, 894, 136.	4.5	14
12	<i>In Situ</i> Observation of Hall Magnetohydrodynamic Cascade in Space Plasma. Physical Review Letters, 2020, 124, 225101.	7.8	43
13	The Solar Orbiter Radio and Plasma Waves (RPW) instrument. Astronomy and Astrophysics, 2020, 642, A12.	5.1	80
14	Modeling MMS Observations at the Earth's Magnetopause with Hybrid Simulations of Alfvénic Turbulence. Astrophysical Journal, 2020, 898, 175.	4.5	17
15	The Role of Parametric Instabilities in Turbulence Generation and Proton Heating: Hybrid Simulations of Parallel-propagating Alfvén Waves. Astrophysical Journal, 2020, 904, 81.	4.5	11
16	Magnetic Field Turbulence in the Solar Wind at Subâ€ion Scales: In Situ Observations and Numerical Simulations. Frontiers in Astronomy and Space Sciences, 2020, 7, .	2.8	19
17	Turbulence versus Fire-hose Instabilities: 3D Hybrid Expanding Box Simulations. Astrophysical Journal, 2019, 883, 178.	4.5	18
18	Dynamic Plasma Interaction at Io: Multispecies Hybrid Simulations. Journal of Geophysical Research: Space Physics, 2019, 124, 313-341.	2.4	9

#	Article	IF	Citations
19	Can Hall Magnetohydrodynamics Explain Plasma Turbulence at Sub-ion Scales?. Astrophysical Journal, 2019, 870, 52.	4.5	49
20	Solar Wind Turbulent Cascade from MHD to Sub-ion Scales: Large-size 3D Hybrid Particle-in-cell Simulations. Astrophysical Journal, 2018, 853, 26.	4.5	69
21	A Review of Alfvénic Turbulence in Highâ€Speed Solar Wind Streams: Hints From Cometary Plasma Turbulence. Journal of Geophysical Research: Space Physics, 2018, 123, 2458-2492.	2.4	51
22	Density Fluctuations in the Solar Wind Driven by Alfvén Wave Parametric Decay. Astrophysical Journal Letters, 2018, 854, L33.	8.3	28
23	Three-dimensional simulations of solar wind turbulence with the hybrid code CAMELIA. Journal of Physics: Conference Series, 2018, 1031, 012002.	0.4	19
24	Electron mirror instability: particle-in-cell simulations. Journal of Plasma Physics, 2018, 84, .	2.1	24
25	von Kármán–Howarth Equation for Hall Magnetohydrodynamics: Hybrid Simulations. Astrophysical Journal Letters, 2018, 857, L19.	8.3	55
26	Proton fire hose instabilities in the expanding solar wind. Journal of Plasma Physics, 2017, 83, .	2.1	10
27	Mirror Instability in the Turbulent Solar Wind. Astrophysical Journal, 2017, 838, 158.	4.5	25
28	Plasma turbulence at ion scales: a comparison between particle in cell and Eulerian hybrid-kinetic approaches. Journal of Plasma Physics, 2017, 83, .	2.1	34
29	Magnetic Reconnection as a Driver for a Sub-ion-scale Cascade in Plasma Turbulence. Astrophysical Journal Letters, 2017, 850, L16.	8.3	92
30	The Parametric Instability of Alfvén Waves: Effects of Temperature Anisotropy. Astrophysical Journal, 2017, 851, 99.	4.5	29
31	PLASMA BETA DEPENDENCE OF THE ION-SCALE SPECTRAL BREAK OF SOLAR WIND TURBULENCE: HIGH-RESOLUTION 2D HYBRID SIMULATIONS. Astrophysical Journal, 2016, 833, 91.	4.5	65
32	Ion cyclotron instability at Io: Hybrid simulation results compared to in situ observations. Journal of Geophysical Research: Space Physics, 2016, 121, 7514-7534.	2.4	2
33	PROTON HEATING BY PICK-UP ION DRIVEN CYCLOTRON WAVES IN THE OUTER HELIOSPHERE: HYBRID EXPANDING BOX SIMULATIONS. Astrophysical Journal, 2016, 832, 32.	4.5	10
34	Two-dimensional hybrid simulations of kinetic plasma turbulence: Current and vorticity vs proton temperature. AIP Conference Proceedings, $2016, \ldots$	0.4	9
35	Properties of Hermean plasma belt: Numerical simulations and comparison with MESSENGER data. Journal of Geophysical Research: Space Physics, 2016, 121, 413-431.	2.4	13
36	ION COLLISIONAL TRANSPORT COEFFICIENTS IN THE SOLAR WIND AT 1 au. Astrophysical Journal, 2016, 825, 120.	4.5	5

#	Article	IF	Citations
37	Microstructure in two- and three-dimensional hybrid simulations of perpendicular collisionlessÂshocks. Journal of Plasma Physics, 2016, 82, .	2.1	30
38	Cometary ion instabilities in the solar wind. Planetary and Space Science, 2015, 119, 3-12.	1.7	8
39	FIRE HOSE INSTABILITY DRIVEN BY ALPHA PARTICLE TEMPERATURE ANISOTROPY. Astrophysical Journal, 2015, 812, 13.	4.5	22
40	PLASMA TURBULENCE AND KINETIC INSTABILITIES AT ION SCALES IN THE EXPANDING SOLAR WIND. Astrophysical Journal Letters, 2015, 811, L32.	8.3	43
41	Electron energetics in the expanding solar wind via Helios observations. Journal of Geophysical Research: Space Physics, 2015, 120, 8177-8193.	2.4	48
42	Linear dispersion properties of ring velocity distribution functions. Physics of Plasmas, 2015, 22, .	1.9	16
43	HIGH-RESOLUTION HYBRID SIMULATIONS OF KINETIC PLASMA TURBULENCE AT PROTON SCALES. Astrophysical Journal, 2015, 812, 21.	4.5	90
44	SOLAR WIND TURBULENCE FROM MHD TO SUB-ION SCALES: HIGH-RESOLUTION HYBRID SIMULATIONS. Astrophysical Journal Letters, 2015, 804, L39.	8.3	57
45	ANISOTROPY OF THIRD-ORDER STRUCTURE FUNCTIONS IN MHD TURBULENCE. Astrophysical Journal, 2015, 804, 119.	4.5	45
46	Proton temperature-anisotropy-driven instabilities in weakly collisional plasmas: Hybrid simulations. Journal of Plasma Physics, 2015, 81, .	2.1	25
47	SOLAR WIND PROTONS AT 1 AU: TRENDS AND BOUNDS, CONSTRAINTS AND CORRELATIONS. Astrophysical Journal Letters, 2014, 784, L15.	8.3	37
48	Oblique electron fire hose instability: Particleâ€inâ€cell simulations. Journal of Geophysical Research: Space Physics, 2014, 119, 59-68.	2.4	56
49	Mirror mode structures in the asymmetric Hermean magnetosheath: Hybrid simulations. Journal of Geophysical Research: Space Physics, 2013, 118, 405-417.	2.4	25
50	Signatures of kinetic instabilities in the solar wind. Journal of Geophysical Research: Space Physics, 2013, 118, 2771-2782.	2.4	68
51	Protons and alpha particles in the expanding solar wind: Hybrid simulations. Journal of Geophysical Research: Space Physics, 2013, 118, 5421-5430.	2.4	35
52	Temperature anisotropy instabilities; combining plasma and magnetic field data at different distances from the Sun. , 2013, , .		1
53	Quasi-linear heating and acceleration in bi-Maxwellian plasmas. Physics of Plasmas, 2013, 20, .	1.9	7
54	Nonlinear evolution of the magnetized Kelvin-Helmholtz instability: From fluid to kinetic modeling. Physics of Plasmas, 2013, 20, .	1.9	48

#	Article	IF	Citations
55	Proton thermal energetics in the solar wind: Helios reloaded. Journal of Geophysical Research: Space Physics, 2013, 118, 1351-1365.	2.4	97
56	On the quasi-linear diffusion in collisionless plasmas (to say nothing about Landau damping). Physics of Plasmas, 2012, 19, 062307.	1.9	2
57	Ion Kinetics in the Solar Wind: Coupling Global Expansion to Local Microphysics. Space Science Reviews, 2012, 172, 373-396.	8.1	95
58	IMPALAS: Investigation of MagnetoPause Activity using Longitudinally-Aligned Satellitesâ€"a mission concept proposed for the ESA M3 2020/2022 launch. Experimental Astronomy, 2012, 33, 365-401.	3.7	0
59	Quasi-trapped ion and electron populations at Mercury. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	40
60	Heating and cooling of protons in the fast solar wind between 0.3 and 1 AU: Helios revisited. Journal of Geophysical Research, 2011, 116, $n/a-n/a$.	3.3	92
61	Proton core-beam system in the expanding solar wind: Hybrid simulations. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	31
62	Electron transport and precipitation at Mercury during the MESSENGER flybys: Implications for electron-stimulated desorption. Planetary and Space Science, 2011, 59, 2026-2036.	1.7	30
63	ARTEMIS Science Objectives. Space Science Reviews, 2011, 165, 59-91.	8.1	47
64	Timing mirror structures observed by Cluster with a magnetosheath flow model. Annales Geophysicae, 2011, 29, 1849-1860.	1.6	25
65	ARTEMIS Science Objectives. , 2011, , 27-59.		4
66	lon Kinetics in the Solar Wind: Coupling Global Expansion to Local Microphysics. Space Sciences Series of ISSI, 2011, , 373-396.	0.0	0
67	Nonlinear mirror structures in a plasma with thermal pressure anisotropy. , 2010, , .		O
68	Langevin representation of Coulomb collisions for bi-Maxwellian plasmas. Journal of Computational Physics, 2010, 229, 5432-5439.	3.8	10
69	Mercury's magnetosphere–solar wind interaction for northward and southward interplanetary magnetic field: Hybrid simulation results. Icarus, 2010, 209, 11-22.	2.5	66
70	On the role of wave-particle interactions in the evolution of solar wind ion distribution functions. AIP Conference Proceedings, 2010 , , .	0.4	4
71	Kinetics of parametric instabilities of Alfv $ ilde{A}$ ©n waves: Evolution of ion distribution functions. Journal of Geophysical Research, 2010, 115, .	3.3	58
72	Parametric decay of linearly polarized shear Alfvén waves in oblique propagation: One and twoâ€dimensional hybrid simulations. Geophysical Research Letters, 2010, 37, .	4.0	46

#	Article	IF	CITATIONS
73	Mirror structures above and below the linear instability threshold: Cluster observations, fluid model and hybrid simulations. Annales Geophysicae, 2009, 27, 601-615.	1.6	74
74	On Coulomb collisions in bi-Maxwellian plasmas. Physics of Plasmas, 2009, 16, .	1.9	23
75	Influence of kinetic effects on the shape of mirror structures. , 2009, , .		1
76	Kinetic instabilities in Mercury's magnetosphere: Threeâ€dimensional simulation results. Geophysical Research Letters, 2009, 36, .	4.0	38
77	Mirror instability: From quasiâ€linear diffusion to coherent structures. Geophysical Research Letters, 2009, 36, .	4.0	23
78	Nonstationarity of a twoâ€dimensional perpendicular shock: Competing mechanisms. Journal of Geophysical Research, 2009, 114, .	3.3	67
79	Alfv \tilde{A} ©n wave filamentation and dispersive phase mixing in a high-density channel: Landau fluid and hybrid simulations. Nonlinear Processes in Geophysics, 2009, 16, 275-285.	1.3	12
80	Nonlinear mirror mode dynamics: Simulations and modeling. Journal of Geophysical Research, 2008, 113, .	3.3	57
81	Oblique proton fire hose instability in the expanding solar wind: Hybrid simulations. Journal of Geophysical Research, 2008, 113, .	3.3	84
82	Comment on the drift mirror instability. Physics of Plasmas, 2008, 15, .	1.9	8
83	Comment on the linear mirror instability near the threshold. Physics of Plasmas, 2007, 14, .	1.9	74
84	Structure of Mercury's magnetosphere for different pressure of the solar wind: Three dimensional hybrid simulations. Geophysical Research Letters, 2007, 34, .	4.0	61
85	Magnetosheath plasma expansion: Hybrid simulations. Geophysical Research Letters, 2007, 34, .	4.0	22
86	Emission of nonlinear whistler waves at the front of perpendicular supercritical shocks: Hybrid versus full particle simulations. Geophysical Research Letters, 2007, 34, .	4.0	54
87	Evolution of the solar wind proton temperature anisotropy from 0.3 to 2.5 AU. Geophysical Research Letters, 2007, 34, .	4.0	177
88	A hybrid-Vlasov model based on the current advance method for the simulation of collisionless magnetized plasma. Journal of Computational Physics, 2007, 225, 753-770.	3.8	167
89	Parallel and oblique proton fire hose instabilities in the presence of alpha/proton drift: Hybrid simulations. Journal of Geophysical Research, 2006, 111, .	3.3	42
90	Heliospheric magnetic field polarity inversions driven by radial velocity field structures. Geophysical Research Letters, 2006, 33, .	4.0	50

#	Article	IF	Citations
91	Parallel proton fire hose instability in the expanding solar wind: Hybrid simulations. Journal of Geophysical Research, 2006, 111 , .	3.3	79
92	Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations. Geophysical Research Letters, 2006, 33, .	4.0	378
93	Hybrid simulation of z-pinches in support of wire array implosion experiments at the Nevada Terawatt Facility. Journal of Plasma Physics, 2006, 72, 1113.	2.1	1
94	Hybrid Simulation of Collisionless Shock Formation in Support of Laboratory Experiments at Unr. Astrophysics and Space Science, 2005, 298, 369-374.	1.4	5
95	Hybrid simulation of the Z-pinch instabilities for profiles generated during wire array implosion in the Saturn pulsed power generator. Physics of Plasmas, 2005, 12, 092701.	1.9	5
96	Structure of the lunar wake: Two-dimensional global hybrid simulations. Geophysical Research Letters, 2005, 32, .	4.0	50
97	Magnetosheath compression: Role of characteristic compression time, alpha particle abundance, and alpha/proton relative velocity. Journal of Geophysical Research, 2005, 110 , .	3.3	48
98	AlfvÃ@n wave heating of heavy ions in the expanding solar wind: Hybrid simulations. Journal of Geophysical Research, 2005, 110, .	3.3	45
99	Development of global magnetohydrodynamic instabilities in Z-pinch plasmas in the presence of nonideal effects. Physics of Plasmas, 2004, 11, 1897-1907.	1.9	17
100	Hybrid simulations of Z-pinches. Computer Physics Communications, 2004, 164, 150-155.	7.5	2
101	Effective collision frequency due to ion-acoustic instability: Theory and simulations. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	31
102	Structure and stationarity of quasi-perpendicular shocks: Numerical simulations. Planetary and Space Science, 2003, 51, 649-657.	1.7	12
103	Hybrid simulations of the expanding solar wind: Temperatures and drift velocities. Geophysical Research Letters, 2003, 30, n/a-n/a.	4.0	39
104	Hybrid simulations of the magnetosheath compression: Marginal stability path. Geophysical Research Letters, 2003, 30, .	4.0	32
105	A global three dimensional hybrid simulation of the interaction between a weakly magnetized obstacle and the solar wind. AIP Conference Proceedings, 2003, , .	0.4	2
106	Excitation of waves at 2 & Excitation of waves at 2 & Excitation of waves at 2 & Excitation of waves at and back propagating waves at & Excitation of waves and state of waves are stated as a state of waves and state of waves and state of waves are stated as a state of waves and state of waves and state of waves are stated as a state of waves and stated as a state of waves are stated as a state of waves and stated as a state of waves are stated as a state of waves and stated as a state of waves are stated as a state of waves and stated as a state of waves are stated as a stated	1.3	6
107	Reformation of perpendicular shocks: Hybrid simulations. Geophysical Research Letters, 2002, 29, 87-1-87-4.	4.0	63
108	Hybrid Simulations of Current-Carrying Instabilities in Z-Pinch Plasmas with Sheared Axial Flow. AIP Conference Proceedings, 2002, , .	0.4	1

#	Article	IF	CITATIONS
109	Nonlinear competition between the whistler and Alfvén fire hoses. Journal of Geophysical Research, 2001, 106, 13215-13218.	3.3	37
110	New kinetic instability: Oblique Alfvén fire hose. Journal of Geophysical Research, 2000, 105, 10519-10526.	3.3	107
111	Excitation of electron acoustic waves near the electron plasma frequency and at twice the plasma frequency. Journal of Geophysical Research, 2000, 105, 12919-12927.	3.3	40
112	Electromagnetic ion beam instabilities: Oblique pulsations. Journal of Geophysical Research, 1999, 104, 4669-4680.	3.3	21
113	Upstream whistlers generated by protons reflected from a quasi-perpendicular shock. Journal of Geophysical Research, 1997, 102, 9809-9819.	3.3	20
114	Whistler waves in 3D hybrid simulations of quasiperpendicular shocks. Geophysical Research Letters, 1996, 23, 621-624.	4.0	21
115	The universal R-matrix and the Yang-Baxter equation with parameters. Journal of Physics A, 1992, 25, L1023-L1027.	1.6	10
116	Universal R-matrix for a two-parametric quantization of gl(2). Journal of Physics A, 1992, 25, L629-L631.	1.6	17