
## Florence Vermeire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5080451/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Group Contribution and Machine Learning Approaches to Predict Abraham Solute Parameters,<br>Solvation Free Energy, and Solvation Enthalpy. Journal of Chemical Information and Modeling, 2022,<br>62, 433-446. | 2.5  | 59        |
| 2  | Detailed Kinetic Modeling for the Pyrolysis of a Jet A Surrogate. Energy & Fuels, 2022, 36, 1304-1315.                                                                                                         | 2.5  | 11        |
| 3  | Variable pressure JSR study of low temperature oxidation chemistry of n-heptane by synchrotron photoionization mass spectrometry. Combustion and Flame, 2022, 240, 111946.                                     | 2.8  | 7         |
| 4  | Analytics Driving Kinetics: Advanced Mass Spectrometric Characterization of Petroleum Products.<br>Energy & Fuels, 2022, 36, 6-59.                                                                             | 2.5  | 10        |
| 5  | Machine Learning for Physicochemical Property Prediction of Complex Hydrocarbon Mixtures.<br>Industrial & Engineering Chemistry Research, 2022, 61, 8581-8594.                                                 | 1.8  | 17        |
| 6  | Predicting Solubility Limits of Organic Solutes for a Wide Range of Solvents and Temperatures.<br>Journal of the American Chemical Society, 2022, 144, 10785-10797.                                            | 6.6  | 31        |
| 7  | Combustion of ethylamine, dimethylamine and diethylamine: Theoretical and kinetic modeling study.<br>Proceedings of the Combustion Institute, 2021, 38, 585-592.                                               | 2.4  | 12        |
| 8  | Thermal decomposition of furans with oxygenated substituents: A combined experimental and quantum chemical study. Proceedings of the Combustion Institute, 2021, 38, 699-707.                                  | 2.4  | 9         |
| 9  | Bond additivity corrections for CBSâ€QB3 calculated standard enthalpies of formation of H, C, O, N, and S containing species. International Journal of Chemical Kinetics, 2021, 53, 345-355.                   | 1.0  | 5         |
| 10 | Transfer learning for solvation free energies: From quantum chemistry to experiments. Chemical<br>Engineering Journal, 2021, 418, 129307.                                                                      | 6.6  | 77        |
| 11 | Detailed experimental and kinetic modeling study of 3â€carene pyrolysis. International Journal of<br>Chemical Kinetics, 2020, 52, 785-795.                                                                     | 1.0  | 4         |
| 12 | Experimental and kinetic modeling study of the pyrolysis and oxidation of diethylamine. Fuel, 2020, 275, 117744.                                                                                               | 3.4  | 11        |
| 13 | The thermal decomposition of furfural: molecular chemistry unraveled. Proceedings of the Combustion Institute, 2019, 37, 445-452.                                                                              | 2.4  | 16        |
| 14 | QUANTIS: Data quality assessment tool by clustering analysis. International Journal of Chemical<br>Kinetics, 2019, 51, 872-885.                                                                                | 1.0  | 7         |
| 15 | A first evaluation of butanoic and pentanoic acid oxidation kinetics. Chemical Engineering Journal, 2019, 373, 973-984.                                                                                        | 6.6  | 27        |
| 16 | Exploring hydroperoxides in combustion: History, recent advances and perspectives. Progress in Energy and Combustion Science, 2019, 73, 132-181.                                                               | 15.8 | 119       |
| 17 | Experimental and modeling study of the pyrolysis and combustion of dimethoxymethane. Combustion and Flame, 2018, 190, 270-283.                                                                                 | 2.8  | 78        |
| 18 | A study of thermal decomposition of bromoethane. Journal of Analytical and Applied Pyrolysis, 2018, 136, 199-207.                                                                                              | 2.6  | 7         |

FLORENCE VERMEIRE

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Experimental and Kinetic Modeling Study of Cyclohexane Pyrolysis. Energy & Fuels, 2018, 32, 7153-7168.                                                                                                    | 2.5  | 12        |
| 20 | An evaluation of the impact of SG1 disproportionation and the addition of styrene in NMP of methyl methacrylate. AICHE Journal, 2018, 64, 2545-2559.                                                      | 1.8  | 15        |
| 21 | Group additive modeling of cyclopentane pyrolysis. Journal of Analytical and Applied Pyrolysis, 2017, 128, 437-450.                                                                                       | 2.6  | 12        |
| 22 | Experimental and kinetic modeling study of the pyrolysis and oxidation of 1,5-hexadiene: The reactivity of allylic radicals and their role in the formation of aromatics. Fuel, 2017, 208, 779-790.       | 3.4  | 17        |
| 23 | Steam cracking of bio-derived normal and branched alkanes: Influence of branching on product<br>distribution and formation of aromatics. Journal of Analytical and Applied Pyrolysis, 2016, 122, 468-478. | 2.6  | 8         |
| 24 | Experimental and Kinetic Modeling Study of 2-Methyl-2-Butene: Allylic Hydrocarbon Kinetics. Journal of Physical Chemistry A, 2015, 119, 7462-7480.                                                        | 1.1  | 62        |
| 25 | Experimental and Modeling Investigation of the Low-Temperature Oxidation of Dimethyl Ether. Journal of Physical Chemistry A, 2015, 119, 7905-7923.                                                        | 1.1  | 85        |
| 26 | Progress in Understanding Lowâ€Temperature Organic Compound Oxidation Using a Jetâ€Stirred Reactor.<br>International Journal of Chemical Kinetics, 2014, 46, 619-639.                                     | 1.0  | 80        |
| 27 | An experimental and modeling study of propene oxidation. Part 1: Speciation measurements in jet-stirred and flow reactors. Combustion and Flame, 2014, 161, 2765-2784.                                    | 2.8  | 251       |
| 28 | An experimental and modeling study of the low- and high-temperature oxidation of cyclohexane.<br>Combustion and Flame, 2013, 160, 2319-2332.                                                              | 2.8  | 71        |
| 29 | Low temperature oxidation of benzene and toluene in mixture with n-decane. Proceedings of the Combustion Institute, 2013, 34, 297-305.                                                                    | 2.4  | 42        |
| 30 | Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models.<br>Chemical Society Reviews, 2011, 40, 4762.                                                                  | 18.7 | 111       |
| 31 | Experimental Confirmation of the Lowâ€Temperature Oxidation Scheme of Alkanes. Angewandte Chemie -<br>International Edition, 2010, 49, 3169-3172.                                                         | 7.2  | 180       |
| 32 | Thermal Decomposition of Norbornane (bicyclo[2.2.1]heptane) Dissolved in Benzene:Â Experimental<br>Study and Mechanism Investigation. Energy & Fuels, 2007, 21, 1406-1414.                                | 2.5  | 7         |
| 33 | Thermal decomposition of n-dodecane: Experiments and kinetic modeling. Journal of Analytical and Applied Pyrolysis, 2007, 78, 419-429.                                                                    | 2.6  | 138       |
| 34 | The merit of pressure dependent kinetic modelling in steam cracking. Faraday Discussions, 0, 238,<br>491-511.                                                                                             | 1.6  | 5         |