Florence Vermeire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5080451/publications.pdf

Version: 2024-02-01

516215 395343 1,603 34 16 33 citations g-index h-index papers 36 36 36 1077 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	An experimental and modeling study of propene oxidation. Part 1: Speciation measurements in jet-stirred and flow reactors. Combustion and Flame, 2014, 161, 2765-2784.	2.8	251
2	Experimental Confirmation of the Lowâ€Temperature Oxidation Scheme of Alkanes. Angewandte Chemie - International Edition, 2010, 49, 3169-3172.	7.2	180
3	Thermal decomposition of n-dodecane: Experiments and kinetic modeling. Journal of Analytical and Applied Pyrolysis, 2007, 78, 419-429.	2.6	138
4	Exploring hydroperoxides in combustion: History, recent advances and perspectives. Progress in Energy and Combustion Science, 2019, 73, 132-181.	15.8	119
5	Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models. Chemical Society Reviews, 2011, 40, 4762.	18.7	111
6	Experimental and Modeling Investigation of the Low-Temperature Oxidation of Dimethyl Ether. Journal of Physical Chemistry A, 2015, 119, 7905-7923.	1.1	85
7	Progress in Understanding Lowâ€Temperature Organic Compound Oxidation Using a Jetâ€Stirred Reactor. International Journal of Chemical Kinetics, 2014, 46, 619-639.	1.0	80
8	Experimental and modeling study of the pyrolysis and combustion of dimethoxymethane. Combustion and Flame, 2018, 190, 270-283.	2.8	78
9	Transfer learning for solvation free energies: From quantum chemistry to experiments. Chemical Engineering Journal, 2021, 418, 129307.	6.6	77
10	An experimental and modeling study of the low- and high-temperature oxidation of cyclohexane. Combustion and Flame, 2013, 160, 2319-2332.	2.8	71
11	Experimental and Kinetic Modeling Study of 2-Methyl-2-Butene: Allylic Hydrocarbon Kinetics. Journal of Physical Chemistry A, 2015, 119, 7462-7480.	1.1	62
12	Group Contribution and Machine Learning Approaches to Predict Abraham Solute Parameters, Solvation Free Energy, and Solvation Enthalpy. Journal of Chemical Information and Modeling, 2022, 62, 433-446.	2.5	59
13	Low temperature oxidation of benzene and toluene in mixture with n-decane. Proceedings of the Combustion Institute, 2013, 34, 297-305.	2.4	42
14	Predicting Solubility Limits of Organic Solutes for a Wide Range of Solvents and Temperatures. Journal of the American Chemical Society, 2022, 144, 10785-10797.	6.6	31
15	A first evaluation of butanoic and pentanoic acid oxidation kinetics. Chemical Engineering Journal, 2019, 373, 973-984.	6.6	27
16	Experimental and kinetic modeling study of the pyrolysis and oxidation of 1,5-hexadiene: The reactivity of allylic radicals and their role in the formation of aromatics. Fuel, 2017, 208, 779-790.	3.4	17
17	Machine Learning for Physicochemical Property Prediction of Complex Hydrocarbon Mixtures. Industrial & Engineering Chemistry Research, 2022, 61, 8581-8594.	1.8	17
18	The thermal decomposition of furfural: molecular chemistry unraveled. Proceedings of the Combustion Institute, 2019, 37, 445-452.	2.4	16

#	Article	IF	CITATIONS
19	An evaluation of the impact of SG1 disproportionation and the addition of styrene in NMP of methyl methacrylate. AICHE Journal, 2018, 64, 2545-2559.	1.8	15
20	Group additive modeling of cyclopentane pyrolysis. Journal of Analytical and Applied Pyrolysis, 2017, 128, 437-450.	2.6	12
21	Experimental and Kinetic Modeling Study of Cyclohexane Pyrolysis. Energy & Experimental and Kinetic Modeling Study of Cyclohexane Pyrolysis. Energy & Experimental and Kinetic Modeling Study of Cyclohexane Pyrolysis. Energy & Experimental and Kinetic Modeling Study of Cyclohexane Pyrolysis. Energy & Experimental and Kinetic Modeling Study of Cyclohexane Pyrolysis. Energy & Experimental and Kinetic Modeling Study of Cyclohexane Pyrolysis. Energy & Experimental and Kinetic Modeling Study of Cyclohexane Pyrolysis. Energy & Experimental and Kinetic Modeling Study of Cyclohexane Pyrolysis. Energy & Experimental and Kinetic Modeling Study of Cyclohexane Pyrolysis.	2.5	12
22	Combustion of ethylamine, dimethylamine and diethylamine: Theoretical and kinetic modeling study. Proceedings of the Combustion Institute, 2021, 38, 585-592.	2.4	12
23	Experimental and kinetic modeling study of the pyrolysis and oxidation of diethylamine. Fuel, 2020, 275, 117744.	3.4	11
24	Detailed Kinetic Modeling for the Pyrolysis of a Jet A Surrogate. Energy & Samp; Fuels, 2022, 36, 1304-1315.	2.5	11
25	Analytics Driving Kinetics: Advanced Mass Spectrometric Characterization of Petroleum Products. Energy & Energy	2.5	10
26	Thermal decomposition of furans with oxygenated substituents: A combined experimental and quantum chemical study. Proceedings of the Combustion Institute, 2021, 38, 699-707.	2.4	9
27	Steam cracking of bio-derived normal and branched alkanes: Influence of branching on product distribution and formation of aromatics. Journal of Analytical and Applied Pyrolysis, 2016, 122, 468-478.	2.6	8
28	Thermal Decomposition of Norbornane (bicyclo[2.2.1]heptane) Dissolved in Benzene:Â Experimental Study and Mechanism Investigation. Energy & Study and Mechanism Investigation. Energy & Study and Mechanism Investigation.	2.5	7
29	A study of thermal decomposition of bromoethane. Journal of Analytical and Applied Pyrolysis, 2018, 136, 199-207.	2.6	7
30	QUANTIS: Data quality assessment tool by clustering analysis. International Journal of Chemical Kinetics, 2019, 51, 872-885.	1.0	7
31	Variable pressure JSR study of low temperature oxidation chemistry of n-heptane by synchrotron photoionization mass spectrometry. Combustion and Flame, 2022, 240, 111946.	2.8	7
32	Bond additivity corrections for CBSâ€QB3 calculated standard enthalpies of formation of H, C, O, N, and S containing species. International Journal of Chemical Kinetics, 2021, 53, 345-355.	1.0	5
33	The merit of pressure dependent kinetic modelling in steam cracking. Faraday Discussions, 0, 238, 491-511.	1.6	5
34	Detailed experimental and kinetic modeling study of 3â€carene pyrolysis. International Journal of Chemical Kinetics, 2020, 52, 785-795.	1.0	4