Ji-Xin Cheng

List of Publications by Citations

Source: https://exaly.com/author-pdf/5080376/ji-xin-cheng-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 17,612 126 270 h-index g-index citations papers 6.95 20,488 7.6 304 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
270	In vitro and in vivo two-photon luminescence imaging of single gold nanorods. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 15752-6	11.5	858
269	Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications. Journal of Physical Chemistry B, 2004 , 108, 827-840	3.4	725
268	Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity. <i>Advanced Materials</i> , 2007 , 19, 3136-3141	24	491
267	Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. <i>Developmental Cell</i> , 2013 , 24, 384-99	10.2	485
266	Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. <i>Cell Metabolism</i> , 2014 , 19, 393-406	24.6	478
265	Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. <i>Photochemistry and Photobiology</i> , 2009 , 85, 21-32	3.6	450
264	Hyperthermic effects of gold nanorods on tumor cells. <i>Nanomedicine</i> , 2007 , 2, 125-32	5.6	449
263	Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle-cell interaction. <i>Expert Opinion on Drug Delivery</i> , 2010 , 7, 49-62	8	426
262	Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine. <i>Science</i> , 2015 , 350, aaa8870	33.3	400
261	Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Forster resonance energy transfer imaging. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 6596-601	11.5	335
260	Laser-scanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology. <i>Biophysical Journal</i> , 2002 , 83, 502-9	2.9	315
259	Polarization coherent anti-Stokes Raman scattering microscopy. <i>Optics Letters</i> , 2001 , 26, 1341-3	3	283
258	Lipid Desaturation Is a Metabolic Marker and Therapeutic Target of Ovarian Cancer Stem Cells. <i>Cell Stem Cell</i> , 2017 , 20, 303-314.e5	18	282
257	Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2002 , 19, 1363	1.7	277
256	Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo forster resonance energy transfer imaging. <i>Langmuir</i> , 2008 , 24, 5213-7	4	275
255	An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 1277-1280	3.4	275
254	Controlling the cellular uptake of gold nanorods. <i>Langmuir</i> , 2007 , 23, 1596-9	4	271

(2010-2002)

253	Multiplex Coherent Anti-Stokes Raman Scattering Microspectroscopy and Study of Lipid Vesicles. Journal of Physical Chemistry B, 2002 , 106, 8493-8498	3.4	269	
252	Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues. <i>Biophysical Journal</i> , 2005 , 89, 581-91	2.9	250	
251	Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy. <i>Journal of Lipid Research</i> , 2003 , 44, 2202-8	6.3	243	
250	Vibrational Imaging with High Sensitivity via Epidetected Coherent Anti-Stokes Raman Scattering Microscopy. <i>Physical Review Letters</i> , 2001 , 87,	7.4	242	
249	Single cell optical imaging and spectroscopy. <i>Chemical Reviews</i> , 2013 , 113, 2469-527	68.1	207	
248	Ordering of water molecules between phospholipid bilayers visualized by coherent anti-Stokes Raman scattering microscopy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 9826-30	11.5	175	
247	A comparative study of fat storage quantitation in nematode Caenorhabditis elegans using label and label-free methods. <i>PLoS ONE</i> , 2010 , 5, e12810	3.7	171	
246	Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis. <i>Analytical Chemistry</i> , 2013 , 85, 98-106	7.8	159	
245	Microsecond Scale Vibrational Spectroscopic Imaging by Multiplex Stimulated Raman Scattering Microscopy. <i>Light: Science and Applications</i> , 2015 , 4,	16.7	146	
244	Characterization of photodamage in coherent anti-Stokes Raman scattering microscopy. <i>Optics Express</i> , 2006 , 14, 3942-51	3.3	139	
243	Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy. <i>Optics Express</i> , 2008 , 16, 19396-409	3.3	133	
242	Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis. <i>BMC Cancer</i> , 2009 , 9, 42	4.8	132	
241	Green's function formulation for third-harmonic generation microscopy. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2002 , 19, 1604	1.7	131	
240	Depth-resolved mid-infrared photothermal imaging of living cells and organisms with submicrometer spatial resolution. <i>Science Advances</i> , 2016 , 2, e1600521	14.3	128	
239	Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy. Journal of Lipid Research, 2010 , 51, 3091-102	6.3	125	
238	Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy. <i>Journal of Biomedical Optics</i> , 2007 , 12, 054007	3.5	124	
237	High-quality manganese-doped zinc sulfide quantum rods with tunable dual-color and multiphoton emissions. <i>Journal of the American Chemical Society</i> , 2011 , 133, 5389-96	16.4	119	
236	Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 3485-8	16.4	118	

235	Curcumin inhibits adipocyte differentiation through modulation of mitotic clonal expansion. <i>Journal of Nutritional Biochemistry</i> , 2011 , 22, 910-20	6.3	113
234	Coherent Raman Scattering Microscopy in Biology and Medicine. <i>Annual Review of Biomedical Engineering</i> , 2015 , 17, 415-45	12	111
233	Highly Sensitive Vibrational Imaging by Femtosecond Pulse Stimulated Raman Loss. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 1248-1253	6.4	110
232	Far-field Imaging of Non-fluorescent Species with Sub-diffraction Resolution. <i>Nature Photonics</i> , 2013 , 7, 449-453	33.9	107
231	Coherent anti-Stokes Raman scattering microscopy. <i>Applied Spectroscopy</i> , 2007 , 61, 197-208	3.1	107
230	A dynamic, cytoplasmic triacylglycerol pool in enterocytes revealed by ex vivo and in vivo coherent anti-Stokes Raman scattering imaging. <i>Journal of Lipid Research</i> , 2009 , 50, 1080-9	6.3	105
229	Label-free bond-selective imaging by listening to vibrationally excited molecules. <i>Physical Review Letters</i> , 2011 , 106, 238106	7·4	105
228	Semiconducting Polymer Nanoparticles for Centimeters-Deep Photoacoustic Imaging in the Second Near-Infrared Window. <i>Advanced Materials</i> , 2017 , 29, 1703403	24	104
227	High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 7681-6	3.4	104
226	Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in coexisting domains. <i>Biophysical Journal</i> , 2005 , 89, 3480-90	2.9	104
225	Multimodal Nonlinear Optical Microscopy. Laser and Photonics Reviews, 2011, 5, 496	8.3	103
224	Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy. <i>Accounts of Chemical Research</i> , 2014 , 47, 2282-90	24.3	102
223	Label-free Imaging of Arterial Cells and Extracellular Matrix Using a Multimodal CARS Microscope. <i>Optics Communications</i> , 2008 , 281, 1813-1822	2	102
222	A multimodal platform for nonlinear optical microscopy and microspectroscopy. <i>Optics Express</i> , 2009 , 17, 1282-90	3.3	100
221	Selective detection of protein crystals by second harmonic microscopy. <i>Journal of the American Chemical Society</i> , 2008 , 130, 14076-7	16.4	100
220	Blood-stable, tumor-adaptable disulfide bonded mPEG-(Cys)4-PDLLA micelles for chemotherapy. <i>Biomaterials</i> , 2013 , 34, 552-61	15.6	95
219	Direct visualization of de novo lipogenesis in single living cells. Scientific Reports, 2014, 4, 6807	4.9	93
218	Coherent anti-Stokes Raman scattering imaging of myelin degradation reveals a calcium-dependent pathway in lyso-PtdCho-induced demyelination. <i>Journal of Neuroscience Research</i> , 2007 , 85, 2870-81	4.4	91

(2016-2014)

217	High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite raman laser. <i>Scientific Reports</i> , 2014 , 4, 6889	4.9	90	
216	Assessing cholesterol storage in live cells and C. elegans by stimulated Raman scattering imaging of phenyl-Diyne cholesterol. <i>Scientific Reports</i> , 2015 , 5, 7930	4.9	90	
215	Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans. <i>Journal of Lipid Research</i> , 2010 , 51, 672-7	6.3	89	
214	Effective repair of traumatically injured spinal cord by nanoscale block copolymer micelles. <i>Nature Nanotechnology</i> , 2010 , 5, 80-7	28.7	85	
213	Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2009 , 29, 1342-8	9.4	83	
212	All-Glass, Large Metalens at Visible Wavelength Using Deep-Ultraviolet Projection Lithography. <i>Nano Letters</i> , 2019 , 19, 8673-8682	11.5	82	
211	Label-free imaging of semiconducting and metallic carbon nanotubes in cells and mice using transient absorption microscopy. <i>Nature Nanotechnology</i> , 2011 , 7, 56-61	28.7	81	
210	Second harmonic and sum frequency generation imaging of fibrous astroglial filaments in ex vivo spinal tissues. <i>Biophysical Journal</i> , 2007 , 92, 3251-9	2.9	79	
209	Antibiotic Resistance: Photo-Disassembly of Membrane Microdomains Revives Conventional Antibiotics against MRSA (Adv. Sci. 6/2020). <i>Advanced Science</i> , 2020 , 7, 2070035	13.6	78	
208	Vibrational imaging of tablets by epi-detected stimulated Raman scattering microscopy. <i>Analyst, The,</i> 2010 , 135, 2613-9	5	78	
207	Glutamate excitotoxicity inflicts paranodal myelin splitting and retraction. <i>PLoS ONE</i> , 2009 , 4, e6705	3.7	77	
206	Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper. <i>Optics Express</i> , 2013 , 21, 13864-74	3.3	76	
205	Neuroprotective ferulic acid (FA)-glycol chitosan (GC) nanoparticles for functional restoration of traumatically injured spinal cord. <i>Biomaterials</i> , 2014 , 35, 2355-2364	15.6	72	
204	Spectrometer-free vibrational imaging by retrieving stimulated Raman signal from highly scattered photons. <i>Science Advances</i> , 2015 , 1, e1500738	14.3	70	
203	Label-free quantitative imaging of cholesterol in intact tissues by hyperspectral stimulated Raman scattering microscopy. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 13042-6	16.4	70	
202	Assessing breast tumor margin by multispectral photoacoustic tomography. <i>Biomedical Optics Express</i> , 2015 , 6, 1273-81	3.5	67	
201	Plk1 inhibition enhances the efficacy of androgen signaling blockade in castration-resistant prostate cancer. <i>Cancer Research</i> , 2014 , 74, 6635-47	10.1	67	
200	Photochemical Tagging for Quantitation of Unsaturated Fatty Acids by Mass Spectrometry. <i>Analytical Chemistry</i> , 2016 , 88, 8931-5	7.8	66	

199	Intestine-specific expression of acyl CoA:diacylglycerol acyltransferase 1 reverses resistance to diet-induced hepatic steatosis and obesity in Dgat1-/- mice. <i>Journal of Lipid Research</i> , 2010 , 51, 1770-80	6.3	65
198	Compression induces acute demyelination and potassium channel exposure in spinal cord. <i>Journal of Neurotrauma</i> , 2010 , 27, 1109-20	5.4	65
197	High-sensitivity intravascular photoacoustic imaging of lipid-laden plaque with a collinear catheter design. <i>Scientific Reports</i> , 2016 , 6, 25236	4.9	64
196	Synchronization of two passively mode-locked, picosecond lasers within 20 fs for coherent anti-Stokes Raman scattering microscopy. <i>Review of Scientific Instruments</i> , 2002 , 73, 2843-2848	1.7	63
195	Imaging lipid metabolism in live Caenorhabditis elegans using fingerprint vibrations. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 11787-92	16.4	62
194	Stimulated Raman scattering flow cytometry for label-free single-particle analysis. <i>Optica</i> , 2017 , 4, 103	8.6	62
193	The layered structure of coronary adventitia under mechanical load. <i>Biophysical Journal</i> , 2011 , 101, 255	52692	62
192	Differential association of adipophilin and TIP47 proteins with cytoplasmic lipid droplets in mouse enterocytes during dietary fat absorption. <i>Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids</i> , 2009 , 1791, 1173-80	5	61
191	Stimulated Raman spectroscopic imaging by microsecond delay-line tuning. <i>Optica</i> , 2016 , 3, 1377	8.6	60
190	Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet-induced metabolic disorders. <i>Molecular Metabolism</i> , 2017 , 6, 863-872	8.8	59
189	In situ visualization of paclitaxel distribution and release by coherent anti-Stokes Raman scattering microscopy. <i>Analytical Chemistry</i> , 2006 , 78, 8036-43	7.8	59
188	Paclitaxel distribution in poly(ethylene glycol)/poly(lactide-co-glycolic acid) blends and its release visualized by coherent anti-Stokes Raman scattering microscopy. <i>Journal of Controlled Release</i> , 2007 , 122, 261-8	11.7	56
187	In vitro and in vivo nonlinear optical imaging of silicon nanowires. <i>Nano Letters</i> , 2009 , 9, 2440-4	11.5	55
186	Antibiotic Susceptibility Determination within One Cell Cycle at Single-Bacterium Level by Stimulated Raman Metabolic Imaging. <i>Analytical Chemistry</i> , 2018 , 90, 3737-3743	7.8	52
185	Microfluidic CARS cytometry. Optics Express, 2008, 16, 5782-9	3.3	52
184	Avasimibe encapsulated in human serum albumin blocks cholesterol esterification for selective cancer treatment. <i>ACS Nano</i> , 2015 , 9, 2420-32	16.7	50
183	Gold nanorod-mediated photothermolysis induces apoptosis of macrophages via damage of mitochondria. <i>Nanomedicine</i> , 2009 , 4, 265-76	5.6	50
182	Nanomedicine for treating spinal cord injury. <i>Nanoscale</i> , 2013 , 5, 8821-36	7.7	49

(2021-2017)

181	Mid-Infrared Photothermal Imaging of Active Pharmaceutical Ingredients at Submicrometer Spatial Resolution. <i>Analytical Chemistry</i> , 2017 , 89, 4863-4867	7.8	46	
180	Acrolein induces myelin damage in mammalian spinal cord. <i>Journal of Neurochemistry</i> , 2011 , 117, 554-6	46	46	
179	Single-cell profiling reveals the origin of phenotypic variability in adipogenesis. <i>PLoS ONE</i> , 2009 , 4, e518	89 .7	46	
178	Molecular composition and orientation in myelin figures characterized by coherent anti-stokes Raman scattering microscopy. <i>Langmuir</i> , 2005 , 21, 6478-86	4	46	
177	Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second. <i>Scientific Reports</i> , 2017 , 7, 1417	4.9	45	
176	Biaxial deformation of collagen and elastin fibers in coronary adventitia. <i>Journal of Applied Physiology</i> , 2013 , 115, 1683-93	3.7	45	
175	Multimodal Nonlinear Optical Microscopy and Applications to Central Nervous System Imaging. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2008 , 14, 4-9	3.8	45	
174	Perspective: Coherent Raman scattering microscopy, the future is bright. <i>APL Photonics</i> , 2018 , 3, 09090) 1 5.2	44	
173	Longitudinal in vivo coherent anti-Stokes Raman scattering imaging of demyelination and remyelination in injured spinal cord. <i>Journal of Biomedical Optics</i> , 2011 , 16, 106012	3.5	44	
172	Visualizing systemic clearance and cellular level biodistribution of gold nanorods by intrinsic two-photon luminescence. <i>Langmuir</i> , 2009 , 25, 12454-9	4	44	
171	In Vivo and in Situ Spectroscopic Imaging by a Handheld Stimulated Raman Scattering Microscope. <i>ACS Photonics</i> , 2018 , 5, 947-954	6.3	43	
170	High-speed stimulated hyperspectral Raman imaging using rapid acousto-optic delay lines. <i>Optics Letters</i> , 2017 , 42, 1548-1551	3	43	
169	Volumetric chemical imaging by stimulated Raman projection microscopy and tomography. <i>Nature Communications</i> , 2017 , 8, 15117	17.4	42	
168	FRET imaging reveals different cellular entry routes of self-assembled and disulfide bonded polymeric micelles. <i>Molecular Pharmaceutics</i> , 2013 , 10, 3497-506	5.6	42	
167	Label-free imaging of lipid-droplet intracellular motion in early Drosophila embryos using femtosecond-stimulated Raman loss microscopy. <i>Biophysical Journal</i> , 2012 , 102, 1666-75	2.9	42	
166	Chasing lipids in health and diseases by coherent anti-Stokes Raman scattering microscopy. <i>Vibrational Spectroscopy</i> , 2009 , 50, 160-167	2.1	42	
165	Bond-selective photoacoustic imaging by converting molecular vibration into acoustic waves. <i>Photoacoustics</i> , 2016 , 4, 11-21	9	42	
164	Meta-optics achieves RGB-achromatic focusing for virtual reality. <i>Science Advances</i> , 2021 , 7,	14.3	42	

163	Fast assessment of lipid content in arteries in vivo by intravascular photoacoustic tomography. <i>Scientific Reports</i> , 2018 , 8, 2400	4.9	41
162	Real-time CARS imaging reveals a calpain-dependent pathway for paranodal myelin retraction during high-frequency stimulation. <i>PLoS ONE</i> , 2011 , 6, e17176	3.7	41
161	Ultrafast chemical imaging by widefield photothermal sensing of infrared absorption. <i>Science Advances</i> , 2019 , 5, eaav7127	14.3	40
160	Label-free imaging through nonlinear optical signals. <i>Materials Today</i> , 2011 , 14, 264-273	21.8	40
159	Spectroscopic Imaging of Deep Tissue through Photoacoustic Detection of Molecular Vibration. Journal of Physical Chemistry Letters, 2013 , 4, 2177-2185	6.4	39
158	Fast detection of the metallic state of individual single-walled carbon nanotubes using a transient-absorption optical microscope. <i>Physical Review Letters</i> , 2010 , 105, 217401	7.4	39
157	Imaging Gold Nanorods by Plasmon-Resonance-Enhanced Four Wave Mixing. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 2657-2663	3.8	38
156	Novel potassium channel blocker, 4-AP-3-MeOH, inhibits fast potassium channels and restores axonal conduction in injured guinea pig spinal cord white matter. <i>Journal of Neurophysiology</i> , 2010 , 103, 469-78	3.2	38
155	Actionable Cytopathogenic Host Responses of Human Alveolar Type 2 Cells to SARS-CoV-2. <i>Molecular Cell</i> , 2020 , 80, 1104-1122.e9	17.6	38
154	Spectroscopic stimulated Raman scattering imaging of highly dynamic specimens through matrix completion. <i>Light: Science and Applications</i> , 2018 , 7, 17179	16.7	38
153	Label-free spectroscopic detection of membrane potential using stimulated Raman scattering. <i>Applied Physics Letters</i> , 2015 , 106, 173704	3.4	37
152	Deciphering single cell metabolism by coherent Raman scattering microscopy. <i>Current Opinion in Chemical Biology</i> , 2016 , 33, 46-57	9.7	37
151	Mapping lipid and collagen by multispectral photoacoustic imaging of chemical bond vibration. Journal of Biomedical Optics, 2012 , 17, 96010-1	3.5	37
150	Nonlinear optical imaging to evaluate the impact of obesity on mammary gland and tumor stroma. <i>Molecular Imaging</i> , 2007 , 6, 205-11	3.7	37
149	Nonlinear Optical Imaging to Evaluate the Impact of Obesity on Mammary Gland and Tumor Stroma. <i>Molecular Imaging</i> , 2007 , 6, 7290.2007.00018	3.7	36
148	Label-Free Vibrational Spectroscopic Imaging of Neuronal Membrane Potential. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 1932-1936	6.4	35
147	High-speed intravascular photoacoustic imaging at 1.7 th with a KTP-based OPO. <i>Biomedical Optics Express</i> , 2015 , 6, 4557-66	3.5	34
146	Label-free analysis of breast tissue polarity by Raman imaging of lipid phase. <i>Biophysical Journal</i> , 2012 , 102, 1215-23	2.9	34

(2007-2011)

145	Paranodal myelin retraction in relapsing experimental autoimmune encephalomyelitis visualized by coherent anti-Stokes Raman scattering microscopy. <i>Journal of Biomedical Optics</i> , 2011 , 16, 106006	3.5	34	
144	Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity. <i>Nature Communications</i> , 2019 , 10, 5318	17.4	34	
143	Frizzled-7 Identifies Platinum-Tolerant Ovarian Cancer Cells Susceptible to Ferroptosis. <i>Cancer Research</i> , 2021 , 81, 384-399	10.1	34	
142	Cholesterol Esterification Inhibition Suppresses Prostate Cancer Metastasis by Impairing the Wnt/転atenin Pathway. <i>Molecular Cancer Research</i> , 2018 , 16, 974-985	6.6	32	
141	Coherent Anti-Stokes Raman Scattering Correlation Spectroscopy: Probing Dynamical Processes with Chemical Selectivity. <i>Journal of Physical Chemistry A</i> , 2002 , 106, 8561-8568	2.8	32	
140	Bond-selective transient phase imaging via sensing of the infrared photothermal effect. <i>Light:</i> Science and Applications, 2019 , 8, 116	16.7	32	
139	Quantification of Lipid Metabolism in Living Cells through the Dynamics of Lipid Droplets Measured by Stimulated Raman Scattering Imaging. <i>Analytical Chemistry</i> , 2017 , 89, 4502-4507	7.8	31	
138	Morphological and Biomechanical Differences in the Elastase and AnglI apoE(-/-) Rodent Models of Abdominal Aortic Aneurysms. <i>BioMed Research International</i> , 2015 , 2015, 413189	3	31	
137	Paranodal myelin damage after acute stretch in Guinea pig spinal cord. <i>Journal of Neurotrauma</i> , 2012 , 29, 611-9	5.4	31	
136	Two-photon Luminescence Imaging of Bacillus Spores Using Peptide-functionalized Gold Nanorods. <i>Nano Research</i> , 2008 , 1, 450	10	31	
135	Bond-Selective Imaging of Cells by Mid-Infrared Photothermal Microscopy in High Wavenumber Region. <i>Journal of Physical Chemistry B</i> , 2017 , 121, 10249-10255	3.4	29	
134	Multiplex Stimulated Raman Scattering Imaging Cytometry Reveals Lipid-Rich Protrusions in Cancer Cells under Stress Condition. <i>IScience</i> , 2020 , 23, 100953	6.1	29	
133	Highly sensitive transient absorption imaging of graphene and graphene oxide in living cells and circulating blood. <i>Scientific Reports</i> , 2015 , 5, 12394	4.9	28	
132	Vibrational fingerprint mapping reveals spatial distribution of functional groups of lignin in plant cell wall. <i>Analytical Chemistry</i> , 2015 , 87, 9436-42	7.8	28	
131	Nonlinear Optical Microscopy of Single Nanostructures. <i>Annual Review of Materials Research</i> , 2013 , 43, 213-236	12.8	28	
130	Transient absorption microscopy: Technological innovations and applications in materials science and life science. <i>Journal of Chemical Physics</i> , 2020 , 152, 020901	3.9	27	
129	Fingerprinting a Living Cell by Raman Integrated Mid-Infrared Photothermal Microscopy. <i>Analytical Chemistry</i> , 2019 , 91, 10750-10756	7.8	27	
128	Increasing the imaging depth of coherent anti-Stokes Raman scattering microscopy with a miniature microscope objective. <i>Optics Letters</i> , 2007 , 32, 2212-4	3	27	

127	Rapid Determination of Antimicrobial Susceptibility by Stimulated Raman Scattering Imaging of DO Metabolic Incorporation in a Single Bacterium. <i>Advanced Science</i> , 2020 , 7, 2001452	13.6	27
126	Photolysis of Staphyloxanthin in Methicillin-Resistant Potentiates Killing by Reactive Oxygen Species. <i>Advanced Science</i> , 2019 , 6, 1900030	13.6	26
125	In Situ and In Vivo Molecular Analysis by Coherent Raman Scattering Microscopy. <i>Annual Review of Analytical Chemistry</i> , 2016 , 9, 69-93	12.5	26
124	Functionalized NIR-II Semiconducting Polymer Nanoparticles for Single-cell to Whole-Organ Imaging of PSMA-Positive Prostate Cancer. <i>Small</i> , 2020 , 16, e2001215	11	26
123	Evolution of Membrane Fouling Revealed by Label-Free Vibrational Spectroscopic Imaging. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	25
122	Cholesterol esterification inhibition and imatinib treatment synergistically inhibit growth of BCR-ABL mutation-independent resistant chronic myelogenous leukemia. <i>PLoS ONE</i> , 2017 , 12, e017955	s8 ^{.7}	25
121	Label-free in vivo imaging of peripheral nerve by multispectral photoacoustic tomography. <i>Journal of Biophotonics</i> , 2016 , 9, 124-8	3.1	24
120	Multimodal coherent anti-Stokes Raman spectroscopic imaging with a fiber optical parametric oscillator. <i>Applied Physics Letters</i> , 2011 , 98, 191106	3.4	24
119	Volumetric stimulated Raman scattering imaging of cleared tissues towards three-dimensional chemical histopathology. <i>Biomedical Optics Express</i> , 2019 , 10, 4329-4339	3.5	24
118	Experimental observation and theoretical analysis of Raman resonance-enhanced photodamage in coherent anti-Stokes Raman scattering microscopy. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2007 , 24, 544	1.7	23
117	Denoising Stimulated Raman Spectroscopic Images by Total Variation Minimization. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 19397-19403	3.8	22
116	Quantitative Assessment of Liver Steatosis and Affected Pathways with Molecular Imaging and Proteomic Profiling. <i>Scientific Reports</i> , 2018 , 8, 3606	4.9	22
115	Optoacoustic brain stimulation at submillimeter spatial precision. <i>Nature Communications</i> , 2020 , 11, 88	117.4	21
114	Label-Free Imaging of Heme Dynamics in Living Organisms by Transient Absorption Microscopy. <i>Analytical Chemistry</i> , 2018 , 90, 3395-3401	7.8	21
113	Compact high power barium nitrite crystal-based Raman laser at 1197 nm for photoacoustic imaging of fat. <i>Journal of Biomedical Optics</i> , 2013 , 18, 040502	3.5	21
112	Spectral analysis assisted photoacoustic imaging for lipid composition differentiation. <i>Photoacoustics</i> , 2017 , 7, 12-19	9	20
111	Cholesterol esterification inhibition and gemcitabine synergistically suppress pancreatic ductal adenocarcinoma proliferation. <i>PLoS ONE</i> , 2018 , 13, e0193318	3.7	20
110	Label-free coherent anti-stokes Raman scattering imaging of coexisting lipid domains in single bilayers. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 1576-9	3.4	20

(2013-2017)

109	Imaging chemistry inside living cells by stimulated Raman scattering microscopy. <i>Methods</i> , 2017 , 128, 119-128	4.6	19	
108	High-Speed Spectroscopic Transient Absorption Imaging of Defects in Graphene. <i>Nano Letters</i> , 2018 , 18, 1489-1497	11.5	18	
107	Stimulated Raman Imaging Reveals Aberrant Lipogenesis as a Metabolic Marker for Azole-Resistant Candida albicans. <i>Analytical Chemistry</i> , 2017 , 89, 9822-9829	7.8	18	
106	Label-free real-time imaging of myelination in the Xenopus laevis tadpole by in vivo stimulated Raman scattering microscopy. <i>Journal of Biomedical Optics</i> , 2014 , 19, 086005	3.5	18	
105	Application of coherent anti-Stokes Raman scattering microscopy to image the changes in a paclitaxel-poly(styrene-b-isobutylene-b-styrene) matrix pre- and post-drug elution. <i>Journal of Biomedical Materials Research - Part A</i> , 2008 , 87, 913-20	5.4	18	
104	In vitro exploration of ACAT contributions to lipid droplet formation during adipogenesis. <i>Journal of Lipid Research</i> , 2018 , 59, 820-829	6.3	17	
103	Fingerprint Stimulated Raman Scattering Imaging Reveals Retinoid Coupling Lipid Metabolism and Survival. <i>ChemPhysChem</i> , 2018 , 19, 2500-2506	3.2	17	
102	Assessment of white matter loss using bond-selective photoacoustic imaging in a rat model of contusive spinal cord injury. <i>Journal of Neurotrauma</i> , 2014 , 31, 1998-2002	5.4	17	
101	A fiber optoacoustic guide with augmented reality for precision breast-conserving surgery. <i>Light: Science and Applications</i> , 2018 , 7, 2	16.7	16	
100	3,3FDiindolylmethane suppresses high-fat diet-induced obesity through inhibiting adipogenesis of pre-adipocytes by targeting USP2 activity. <i>Molecular Nutrition and Food Research</i> , 2017 , 61, 1700119	5.9	15	
99	New imaging techniques in the diagnosis of multiple sclerosis. <i>Expert Opinion on Medical Diagnostics</i> , 2008 , 2, 1055-1065		15	
98	High-resolution photoacoustic endoscope through beam self-cleaning in a graded index fiber. <i>Optics Letters</i> , 2019 , 44, 3841-3844	3	15	
97	High-Speed Chemical Imaging by Dense-Net Learning of Femtosecond Stimulated Raman Scattering. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 8573-8578	6.4	15	
96	Microsecond fingerprint stimulated Raman spectroscopic imaging by ultrafast tuning and spatial-spectral learning. <i>Nature Communications</i> , 2021 , 12, 3052	17.4	15	
95	In situ Detection of a Single Bacterium in Complex Environment by Hyperspectral CARS Imaging. <i>ChemistrySelect</i> , 2016 , 1, 513-517	1.8	15	
94	siRNA Delivery Using Dithiocarbamate-Anchored Oligonucleotides on Gold Nanorods. <i>Bioconjugate Chemistry</i> , 2019 , 30, 443-453	6.3	15	
93	Imaging Chemical Kinetics of Radical Polymerization with an Ultrafast Coherent Raman Microscope. <i>Advanced Science</i> , 2020 , 7, 1903644	13.6	13	
92	Vibrational Photoacoustic Tomography: Chemical Imaging beyond the Ballistic Regime. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4,	6.4	13	

91	Time-lens based hyperspectral stimulated Raman scattering imaging and quantitative spectral analysis. <i>Journal of Biophotonics</i> , 2013 , 6, 815-20	3.1	13
90	Vibrational Spectroscopic Detection of a Single Virus by Mid-Infrared Photothermal Microscopy. <i>Analytical Chemistry</i> , 2021 , 93, 4100-4107	7.8	13
89	Photo-Disassembly of Membrane Microdomains Revives Conventional Antibiotics against MRSA. <i>Advanced Science</i> , 2020 , 7, 1903117	13.6	12
88	Label-Free Quantitative Imaging of Cholesterol in Intact Tissues by Hyperspectral Stimulated Raman Scattering Microscopy. <i>Angewandte Chemie</i> , 2013 , 125, 13280-13284	3.6	12
87	Imaging growth of neurites in conditioned hydrogel by coherent anti-stokes raman scattering microscopy. <i>Organogenesis</i> , 2009 , 5, 231-7	1.7	12
86	Bond-selective imaging by optically sensing the mid-infrared photothermal effect. <i>Science Advances</i> , 2021 , 7,	14.3	12
85	Label-free quantitation of glycated hemoglobin in single red blood cells by transient absorption microscopy and phasor analysis. <i>Science Advances</i> , 2019 , 5, eaav0561	14.3	11
84	Intermuscular Adipose Tissue Content and Intramyocellular Lipid Fatty Acid Saturation Are Associated with Glucose Homeostasis in Middle-Aged and Older Adults. <i>Endocrinology and Metabolism</i> , 2017 , 32, 257-264	3.5	11
83	Photoacoustic tomography of intact human prostates and vascular texture analysis identify prostate cancer biopsy targets. <i>Photoacoustics</i> , 2018 , 11, 46-55	9	11
82	Dual-wavelength photo-killing of methicillin-resistant Staphylococcus aureus. <i>JCI Insight</i> , 2020 , 5,	9.9	11
81	Quinine Enhances Photo-Inactivation of Gram-Negative Bacteria. <i>Journal of Infectious Diseases</i> , 2020 , 221, 618-626	7	11
80	Interaction of tau with HNRNPA2B1 and N-methyladenosine RNA mediates the progression of tauopathy. <i>Molecular Cell</i> , 2021 , 81, 4209-4227.e12	17.6	11
79	Mechanisms of Epi-Detected Stimulated Raman Scattering Microscopy. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2012 , 18, 384-388	3.8	10
78	Imaging cytoplasmic lipid droplets in enterocytes and assessing dietary fat absorption. <i>Methods in Cell Biology</i> , 2013 , 116, 151-66	1.8	10
77	Comparative Quantification of Arterial Lipid by Intravascular Photoacoustic-Ultrasound Imaging and Near-Infrared Spectroscopy-Intravascular Ultrasound. <i>Journal of Cardiovascular Translational Research</i> , 2019 , 12, 211-220	3.3	10
76	Ambient Oxygen-Doped Conjugated Polymer for pH-Activatable Aggregation-Enhanced Photoacoustic Imaging in the Second Near-Infrared Window. <i>Analytical Chemistry</i> , 2021 , 93, 3189-3195	7.8	10
75	Staphyloxanthin Photolysis Potentiates Low Concentration Silver Nanoparticles in Eradication of Methicillin-Resistant Staphylococcus aureus. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 5321-5330	3.8	9
74	Raman microspectroscopy for microbiology. <i>Nature Reviews Methods Primers</i> , 2021 , 1,		9

(2020-2019)

73	Label-free Optical Imaging of Membrane Potential. <i>Current Opinion in Biomedical Engineering</i> , 2019 , 12, 118-125	4.4	8
72	Imaging Lipid Metabolism in Live Caenorhabditis elegans Using Fingerprint Vibrations. <i>Angewandte Chemie</i> , 2014 , 126, 11981-11986	3.6	8
71	Volumetric chemical imaging in vivo by a remote-focusing stimulated Raman scattering microscope. <i>Optics Express</i> , 2020 , 28, 30210-30221	3.3	8
70	Unveiling Cancer Metabolism through Spontaneous and Coherent Raman Spectroscopy and Stable Isotope Probing. <i>Cancers</i> , 2021 , 13,	6.6	8
69	High-speed Intraoperative Assessment of Breast Tumor Margins by Multimodal Ultrasound and Photoacoustic Tomography. <i>Medical Devices & Sensors</i> , 2018 , 1, e10018	1.6	8
68	Fluorescence-Detected Mid-Infrared Photothermal Microscopy. <i>Journal of the American Chemical Society</i> , 2021 , 143, 11490-11499	16.4	8
67	Bright Three-Photon Luminescence from Gold/Silver Alloyed Nanostructures for Bioimaging with Negligible Photothermal Toxicity. <i>Angewandte Chemie</i> , 2010 , 122, 3563-3566	3.6	7
66	Cylindrical illumination with angular coupling for whole-prostate photoacoustic tomography. <i>Biomedical Optics Express</i> , 2019 , 10, 1405-1419	3.5	7
65	Polymer Electrochromism Driven by Metabolic Activity Facilitates Rapid and Facile Bacterial Detection and Susceptibility Evaluation. <i>Advanced Functional Materials</i> , 2020 , 30, 2005192	15.6	7
64	Polarization-sensitive stimulated Raman scattering imaging resolves amphotericin B orientation in membrane. <i>Science Advances</i> , 2021 , 7,	14.3	7
63	New imaging techniques in the diagnosis of multiple sclerosis. <i>Expert Opinion on Medical Diagnostics</i> , 2008 , 2, 1055-65		6
62	A fiber optoacoustic emitter with controlled ultrasound frequency for cell membrane sonoporation at submillimeter spatial resolution. <i>Photoacoustics</i> , 2020 , 20, 100208	9	6
61	Fingerprinting Bacterial Metabolic Response to Erythromycin by Raman-Integrated Mid-Infrared Photothermal Microscopy. <i>Analytical Chemistry</i> , 2020 , 92, 14459-14465	7.8	6
60	Plasmon-enhanced coherent anti-stokes Raman scattering vs plasmon-enhanced stimulated Raman scattering: Comparison of line shape and enhancement factor. <i>Journal of Chemical Physics</i> , 2021 , 154, 034201	3.9	6
59	Neural Stimulation In Vitro and In Vivo by Photoacoustic Nanotransducers. <i>Matter</i> , 2021 , 4, 654-674	12.7	6
58	Electronic Preresonance Stimulated Raman Scattering Imaging of Red-Shifted Proteorhodopsins: Toward Quantitation of the Membrane Potential. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 4374-	43 81	5
57	Quantitative imaging of intraerythrocytic hemozoin by transient absorption microscopy. <i>Journal of Biomedical Optics</i> , 2019 , 25, 1-11	3.5	5
56	Origin of dispersive line shapes in plasmon-enhanced stimulated Raman scattering microscopy. <i>Nanophotonics</i> , 2020 , 10, 617-625	6.3	5

55	Chemical imaging of fresh vascular smooth muscle cell response by epi-detected stimulated Raman scattering. <i>Journal of Biophotonics</i> , 2018 , 11, e201700005	3.1	4
54	Imaging of demineralized enamel in intact tooth by epidetected stimulated Raman scattering microscopy. <i>Journal of Biomedical Optics</i> , 2018 , 23, 1-9	3.5	4
53	Stimulated Raman scattering signal generation in a scattering medium using self-reconstructing Bessel beams. <i>Photonics Research</i> , 2020 , 8, 929	6	4
52	Tau Oligomers and Fibrils Exhibit Differential Patterns of Seeding and Association With RNA Binding Proteins. <i>Frontiers in Neurology</i> , 2020 , 11, 579434	4.1	4
51	Coherent anti-Stokes Raman scattering imaging under ambient light. <i>Optics Letters</i> , 2016 , 41, 3880-3	3	4
50	Ultrasensitive Vibrational Imaging of Retinoids by Visible Preresonance Stimulated Raman Scattering Microscopy. <i>Advanced Science</i> , 2021 , 8, 2003136	13.6	4
49	Non-genetic photoacoustic stimulation of single neurons by a tapered fiber optoacoustic emitter. <i>Light: Science and Applications</i> , 2021 , 10, 143	16.7	4
48	Label-Free Stimulated Raman Scattering Imaging of Neuronal Membrane Potential 2019 , 107-122		3
47	Nanoladders Facilitate Directional Axonal Outgrowth and Regeneration. <i>ACS Biomaterials Science and Engineering</i> , 2018 , 4, 1037-1045	5.5	3
46	Non-Linear Optical Imaging of Obesity-Related Health Risks: Review. <i>Journal of Innovative Optical Health Sciences</i> , 2009 , 2, 9-25	1.2	3
45	Photoinactivation of Catalase Sensitizes Candida albicans and Candida auris to ROS-Producing Agents and Immune Cells <i>Advanced Science</i> , 2022 , e2104384	13.6	3
44	Multiwindow SRS Imaging Using a Rapid Widely Tunable Fiber Laser. <i>Analytical Chemistry</i> , 2021 , 93, 15	70 ₇ 2.81 5	7131
43	Granadaene Photobleaching Reduces the Virulence and Increases Antimicrobial Susceptibility of Streptococcus agalactiae. <i>Photochemistry and Photobiology</i> , 2021 , 97, 816-825	3.6	3
42	Assessing carotid atherosclerosis by fiber-optic multispectral photoacoustic tomography 2015,		2
41	Frizzled-7 Identifies Platinum Tolerant Ovarian Cancer Cells Susceptible to Ferroptosis		2
40	Highly sensitive lipid detection and localization in atherosclerotic plaque with a dual-frequency intravascular photoacoustic/ultrasound catheter. <i>Translational Biophotonics</i> , 2020 , 2, e202000004	2.2	2
39	Real-time imaging of surface chemical reactions by electrochemical photothermal reflectance microscopy. <i>Chemical Science</i> , 2020 , 12, 1930-1936	9.4	2
38	Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque at speed of video-rate level 2017 ,		1

37	Converting Molecular Vibration to Mechanical Wave for Bond-Selective Imaging of Deep Tissue Chinese Journal of Chemical Physics, 2015 , 28, 375-382	0.9	1
36	Coupling CARS with multiphoton fluorescence and high harmonic generation imaging modalities using a femtosecond laser source 2009 ,		1
35	Ligand-functionalized gold nanorods as theragnostic agents 2009,		1
34	Multimodal Metabolic Imaging Reveals Pigment Reduction and Lipid Accumulation in Metastatic Melanoma. <i>BME Frontiers</i> , 2021 , 2021, 1-17	4.4	1
33	Rapid Determination of Antibiotic Susceptibility by Stimulated Raman Scattering Imaging of D2O Metab	olism	1
32	Photo-Disassembly of Membrane Microdomains Revives Conventional Antibiotics against MRSA		1
31	Granadaene Photobleaching Reduces the Virulence and Increases Antimicrobial Susceptibility of Streptococcus agalactiae		1
30	FADS2-mediated fatty acid desaturation and cholesterol esterification are signatures of metabolic reprogramming during melanoma progression		1
29	Label-free Spectroscopic Imaging of Lipids in Live Cells and Intact Tissues. FASEB Journal, 2013, 27, 813.	6 0.9	1
28	Room-Temperature Phosphorescence and Low-Energy Induced Direct Triplet Excitation of Alq Engineered Crystals. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 9364-9370	6.4	1
27	Coherent Raman scattering imaging with a near-infrared achromatic metalens. <i>APL Photonics</i> , 2021 , 6, 096107	5.2	1
26	Nanosecond-resolution photothermal dynamic imaging via MHZ digitization and match filtering. <i>Nature Communications</i> , 2021 , 12, 7097	17.4	1
25	Abstract 253: Vibrational Photoacoustic Imaging of Lipid in Murine Abdominal Aortic Aneurysms and Atherosclerosis. <i>Arteriosclerosis, Thrombosis, and Vascular Biology</i> , 2015 , 35,	9.4	1
24	Imaging of Myelin by Coherent Anti-Stokes Raman Scattering Microscopy. Springer Protocols, 2012 , 281-	2931	O
23	Intravascular Photoacoustic Imaging of Lipid-Laden Plaques: From Fundamental Concept Toward Clinical Translation 2020 , 81-104		Ο
22	Bond-selective interferometric scattering microscopy. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 36400)3	0
21	Wide-Field Surface-Enhanced Coherent Anti-Stokes Raman Scattering Microscopy. <i>ACS Photonics</i> , 2022 , 9, 1042-1049	6.3	0
20	New "HOPE" laser for photoacoustic imaging of water Light: Science and Applications, 2022, 11, 107	16.7	O

19	High-precision neural stimulation through optoacoustic emitters Neurophotonics, 2022, 9, 032207	3.9	О
18	Study of Myelin Sheaths by Cars Microscopy 2012 , 221-245		
17	Innentitelbild: Bright Three-Photon Luminescence from Gold/Silver Alloyed Nanostructures for Bioimaging with Negligible Photothermal Toxicity (Angew. Chem. 20/2010). <i>Angewandte Chemie</i> , 2010 , 122, 3464-3464	3.6	
16	Inside Cover: Bright Three-Photon Luminescence from Gold/Silver Alloyed Nanostructures for Bioimaging with Negligible Photothermal Toxicity (Angew. Chem. Int. Ed. 20/2010). <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 3392-3392	16.4	
15	Converting hyperspectral SRS into chemical maps 2022 , 359-369		
14	Rapid determination of antimicrobial susceptibility by SRS single-cell metabolic imaging 2022 , 445-461		
13	Resolving molecular orientation by polarization-sensitive stimulated Raman scattering microscopy 2022 , 529-537		
12	Plasmon-enhanced stimulated Raman scattering microscopy 2022 , 343-356		
11	Miniaturized handheld stimulated Raman scattering microscope 2022 , 551-560		
10	Multiplex stimulated Raman scattering microscopy via a tuned amplifier 2022 , 91-98		
10	Multiplex stimulated Raman scattering microscopy via a tuned amplifier 2022 , 91-98 Absorption-Based Far-Field Label-Free Super-Resolution Microscopy 2019 , 137-169		
		0.5	
9	Absorption-Based Far-Field Label-Free Super-Resolution Microscopy 2019 , 137-169 40-3: Invited Paper: A Large RGB-achromatic Metalens for Virtual/Augmented Reality Applications.	0.5	
9	Absorption-Based Far-Field Label-Free Super-Resolution Microscopy 2019 , 137-169 40-3: Invited Paper: A Large RGB-achromatic Metalens for Virtual/Augmented Reality Applications. Digest of Technical Papers SID International Symposium, 2020 , 51, 575-578 Association of PAT proteins with cytoplasmic lipid droplets in mouse enterocytes. FASEB Journal,		
9 8 7	Absorption-Based Far-Field Label-Free Super-Resolution Microscopy 2019 , 137-169 40-3: Invited Paper: A Large RGB-achromatic Metalens for Virtual/Augmented Reality Applications. <i>Digest of Technical Papers SID International Symposium</i> , 2020 , 51, 575-578 Association of PAT proteins with cytoplasmic lipid droplets in mouse enterocytes. <i>FASEB Journal</i> , 2009 , 23, 343.1 Single-cell Molecular Profiling of Adipogenesis on an Integrated CARS-Confocal Raman Platform.	0.9	
9 8 7 6	Absorption-Based Far-Field Label-Free Super-Resolution Microscopy 2019, 137-169 40-3: Invited Paper: A Large RGB-achromatic Metalens for Virtual/Augmented Reality Applications. Digest of Technical Papers SID International Symposium, 2020, 51, 575-578 Association of PAT proteins with cytoplasmic lipid droplets in mouse enterocytes. FASEB Journal, 2009, 23, 343.1 Single-cell Molecular Profiling of Adipogenesis on an Integrated CARS-Confocal Raman Platform. FASEB Journal, 2009, 23, 681.3 Intestine specific expression of DGAT1 reverses the resistance to diet-induced obesity phenotype	0.9	
9 8 7 6	Absorption-Based Far-Field Label-Free Super-Resolution Microscopy 2019, 137-169 40-3: Invited Paper: A Large RGB-achromatic Metalens for Virtual/Augmented Reality Applications. Digest of Technical Papers SID International Symposium, 2020, 51, 575-578 Association of PAT proteins with cytoplasmic lipid droplets in mouse enterocytes. FASEB Journal, 2009, 23, 343.1 Single-cell Molecular Profiling of Adipogenesis on an Integrated CARS-Confocal Raman Platform. FASEB Journal, 2009, 23, 681.3 Intestine specific expression of DGAT1 reverses the resistance to diet-induced obesity phenotype of DGAT1-deficient female mice. FASEB Journal, 2009, 23, 721.4 Fenofibrate (FEN), a peroxisome proliferator activated receptor alpha (PPAR Dagonist, decreases dietary fat absorption and alters triglyceride (TG) metabolism in enterocytes of mice. FASEB Journal	0.9	

LIST OF PUBLICATIONS

1 Clearance of Nanoparticles During Circulation1