
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5080248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Ikappa B-NF-kappa B Signaling Module: Temporal Control and Selective Gene Activation. Science, 2002, 298, 1241-1245.	6.0	1,672
2	Circuitry of nuclear factor kappaB signaling. Immunological Reviews, 2006, 210, 171-186.	2.8	831
3	Signaling via the <scp>NFκB</scp> system. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2016, 8, 227-241.	6.6	724
4	Molecular Determinants of Crosstalk between Nuclear Receptors and Toll-like Receptors. Cell, 2005, 122, 707-721.	13.5	592
5	A Unifying Model for the Selective Regulation of Inducible Transcription by CpG Islands and Nucleosome Remodeling. Cell, 2009, 138, 114-128.	13.5	528
6	Differential activation and antagonistic function of HIF-α isoforms in macrophages are essential for NO homeostasis. Genes and Development, 2010, 24, 491-501.	2.7	518
7	Stimulus Specificity of Gene Expression Programs Determined by Temporal Control of IKK Activity. Science, 2005, 309, 1857-1861.	6.0	461
8	A single NFκB system for both canonical and non-canonical signaling. Cell Research, 2011, 21, 86-102.	5.7	375
9	One Nucleotide in a κB Site Can Determine Cofactor Specificity for NF-κB Dimers. Cell, 2004, 118, 453-464.	13.5	365
10	A Fourth lκB Protein within the NF-κB Signaling Module. Cell, 2007, 128, 369-381.	13.5	359
11	Accurate information transmission through dynamic biochemical signaling networks. Science, 2014, 346, 1370-1373.	6.0	325
12	CK2 Is a C-Terminal lκB Kinase Responsible for NF-κB Activation during the UV Response. Molecular Cell, 2003, 12, 829-839.	4.5	306
13	Genetic analysis of NF-ÂB/Rel transcription factors defines functional specificities. EMBO Journal, 2003, 22, 5530-5539.	3.5	302
14	ER Stress Activates NF-κB by Integrating Functions of Basal IKK Activity, IRE1 and PERK. PLoS ONE, 2012, 7, e45078.	1.1	266
15	Exhaustion-associated regulatory regions in CD8 ⁺ tumor-infiltrating T cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2776-E2785.	3.3	242
16	Cross-talk between Aryl Hydrocarbon Receptor and the Inflammatory Response. Journal of Biological Chemistry, 2014, 289, 1866-1875.	1.6	220
17	Encoding NF-κB temporal control in response to TNF: distinct roles for the negative regulators lκBα and A20. Genes and Development, 2008, 22, 2093-2101.	2.7	189
18	ll̂ºBε provides negative feedback to control NF-l̂ºB oscillations, signaling dynamics, and inflammatory gene expression. Journal of Cell Biology, 2006, 173, 659-664.	2.3	187

#	Article	IF	CITATIONS
19	ll̂ºBl̂² acts to inhibit and activate gene expression during the inflammatory response. Nature, 2010, 466, 1115-1119.	13.7	175
20	NF-κB dictates the degradation pathway of lκBα. EMBO Journal, 2008, 27, 1357-1367.	3.5	171
21	Fbxw7α- and CSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma. Nature Cell Biology, 2012, 14, 375-385.	4.6	168
22	Control of RelB during dendritic cell activation integrates canonical and noncanonical NF-κB pathways. Nature Immunology, 2012, 13, 1162-1170.	7.0	166
23	Understanding the temporal codes of intra-cellular signals. Current Opinion in Genetics and Development, 2010, 20, 684-693.	1.5	153
24	Nucleosome remodeling at the IL-12 p40 promoter is a TLR-dependent, Rel-independent event. Nature Immunology, 2001, 2, 51-57.	7.0	151
25	Understanding NFâ€ÎºB signaling via mathematical modeling. Molecular Systems Biology, 2008, 4, 192.	3.2	151
26	Crosstalk via the NF-κB signaling system. Cytokine and Growth Factor Reviews, 2008, 19, 187-197.	3.2	149
27	Mechanisms Establishing TLR4-Responsive Activation States of Inflammatory Response Genes. PLoS Genetics, 2011, 7, e1002401.	1.5	146
28	Nuclear Localization of ll̂ºBα Is Mediated by the Second Ankyrin Repeat: the ll̂ºBα Ankyrin Repeats Define a Novel Class of <i>cis</i> -Acting Nuclear Import Sequences. Molecular and Cellular Biology, 1998, 18, 2524-2534.	1.1	142
29	Unique CD40-mediated biological program in B cell activation requires both type 1 and type 2 NF-ÂB activation pathways. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8108-8113.	3.3	129
30	The Dynamics of Signaling as a Pharmacological Target. Cell, 2013, 155, 448-461.	13.5	129
31	A homeostatic model of lκB metabolism to control constitutive NFâ€ÎºB activity. Molecular Systems Biology, 2007, 3, 111.	3.2	126
32	Generation and Activation of Multiple Dimeric Transcription Factors within the NF-κB Signaling System. Molecular and Cellular Biology, 2008, 28, 3139-3150.	1.1	126
33	The Nfkb1 and Nfkb2 Proteins p105 and p100 Function as the Core of High-Molecular-Weight Heterogeneous Complexes. Molecular Cell, 2009, 34, 591-602.	4.5	120
34	Lessons from mathematically modeling the NFâ $\widehat{\mathbb{C}}$ B pathway. Immunological Reviews, 2012, 246, 221-238.	2.8	120
35	Analysis of the RelA:CBP/p300 Interaction Reveals Its Involvement in NF-κB-Driven Transcription. PLoS Biology, 2013, 11, e1001647.	2.6	118
36	Transient lκB Kinase Activity Mediates Temporal NF-κB Dynamics in Response to a Wide Range of Tumor Necrosis Factor-α Doses. Journal of Biological Chemistry, 2006, 281, 2945-2950.	1.6	117

#	Article	IF	CITATIONS
37	High-Content Quantification of Single-Cell Immune Dynamics. Cell Reports, 2016, 15, 411-422.	2.9	117
38	A c-Rel subdomain responsible for enhanced DNA-binding affinity and selective gene activation. Genes and Development, 2005, 19, 2138-2151.	2.7	111
39	Cooperation of multiple signaling pathways in CD40-regulated gene expression in B lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1497-1502.	3.3	107
40	Distinct single-cell signaling characteristics are conferred by the MyD88 and TRIF pathways during TLR4 activation. Science Signaling, 2015, 8, ra69.	1.6	103
41	The Regulatory Logic of the NF-ÂB Signaling System. Cold Spring Harbor Perspectives in Biology, 2010, 2, a000216-a000216.	2.3	99
42	Kinetic control of negative feedback regulators of NF-κB/RelA determines their pathogen- and cytokine-receptor signaling specificity. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9619-9624.	3.3	94
43	Coordination between NF-κB family members p50 and p52 is essential for mediating LTβR signals in the development and organization of secondary lymphoid tissues. Blood, 2006, 107, 1048-1055.	0.6	93
44	A Structural Basis for lκB Kinase 2 Activation Via Oligomerization-Dependent Trans Auto-Phosphorylation. PLoS Biology, 2013, 11, e1001581.	2.6	93
45	NF-κB dynamics determine the stimulus specificity of epigenomic reprogramming in macrophages. Science, 2021, 372, 1349-1353.	6.0	91
46	Suppression of Steady-state, but not Stimulus-induced NF-κB Activity Inhibits Alphavirus-induced Apoptosis. Journal of Cell Biology, 1998, 141, 1479-1487.	2.3	89
47	Kinetic enhancement of NF-lºB·DNA dissociation by llºBl±. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19328-19333.	3.3	88
48	Positive Feedback Within a Kinase Signaling Complex Functions as a Switch Mechanism for NF-κB Activation. Science, 2014, 344, 760-764.	6.0	87
49	The Transcriptional Specificity of NF-κB Dimers Is Coded within the κB DNA Response Elements. Cell Reports, 2012, 2, 824-839.	2.9	86
50	NEMO Ensures Signaling Specificity of the Pleiotropic IKKβ by Directing Its Kinase Activity toward IκBα. Molecular Cell, 2012, 47, 111-121.	4.5	85
51	UV as an Amplifier Rather Than Inducer of NF- \hat{I}^{e} B Activity. Molecular Cell, 2008, 30, 632-641.	4.5	83
52	Comment on "Oscillations in NF-ÂB Signaling Control the Dynamics of Gene Expression". Science, 2005, 308, 52a-52a.	6.0	79
53	Network dynamics determine the autocrine and paracrine signaling functions of TNF. Genes and Development, 2014, 28, 2120-2133.	2.7	79
54	A miR-155–Peli1–c-Rel pathway controls the generation and function of T follicular helper cells. Journal of Experimental Medicine, 2016, 213, 1901-1919.	4.2	78

#	Article	IF	CITATIONS
55	NFâ€₽̂B signaling. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2009, 1, 107-115.	6.6	76
56	The Specificity of Innate Immune Responses Is Enforced by Repression of Interferon Response Elements by NF-IºB p50. Science Signaling, 2011, 4, ra11.	1.6	75
57	Nongenetic origins of cell-to-cell variability in B lymphocyte proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2888-E2897.	3.3	67
58	Six distinct NFκB signaling codons convey discrete information to distinguish stimuli and enable appropriate macrophage responses. Immunity, 2021, 54, 916-930.e7.	6.6	65
59	Regulation and Function of the Caspase-1 in an Inflammatory Microenvironment. Journal of Investigative Dermatology, 2015, 135, 2012-2020.	0.3	60
60	Stabilization of RelB Requires Multidomain Interactions with p100/p52. Journal of Biological Chemistry, 2008, 283, 12324-12332.	1.6	58
61	A Regulatory Circuit Controlling the Dynamics of NFκB cRel Transitions B Cells from Proliferation to Plasma Cell Differentiation. Immunity, 2019, 50, 616-628.e6.	6.6	58
62	NF-κB–inducing kinase plays an essential T cell–intrinsic role in graft-versus-host disease and lethal autoimmunity in mice. Journal of Clinical Investigation, 2011, 121, 4775-4786.	3.9	56
63	Insights into the influence of dispersion correction in the theoretical treatment of guanidine-quinoline copper(I) complexes. Journal of Computational Chemistry, 2014, 35, 1943-1950.	1.5	55
64	Gene Regulatory Strategies that Decode the Duration of NFκB Dynamics Contribute to LPS- versus TNF-Specific Gene Expression. Cell Systems, 2020, 10, 169-182.e5.	2.9	53
65	The REGγ-proteasome forms a regulatory circuit with lκBɛ and NFκB in experimental colitis. Nature Communications, 2016, 7, 10761.	5.8	52
66	Cloning and Characterization of Human TAF20/15. Journal of Biological Chemistry, 1996, 271, 18194-18202.	1.6	51
67	lκBε Is a Key Regulator of B Cell Expansion by Providing Negative Feedback on cRel and RelA in a Stimulus-Specific Manner. Journal of Immunology, 2014, 192, 3121-3132.	0.4	51
68	Early cytokine signatures of ischemia/reperfusion injury in human orthotopic liver transplantation. JCI Insight, 2016, 1, e89679.	2.3	51
69	Chromatin-Bound ll̂ºBα Regulates a Subset of Polycomb Target Genes in Differentiation and Cancer. Cancer Cell, 2013, 24, 151-166.	7.7	46
70	A Pathway Switch Directs BAFF Signaling to Distinct NFήB Transcription Factors in Maturing and Proliferating B Cells. Cell Reports, 2014, 9, 2098-2111.	2.9	43
71	Dual Delayed Feedback Provides Sensitivity and Robustness to the NF-κB Signaling Module. PLoS Computational Biology, 2013, 9, e1003112.	1.5	42
72	Iterative Modeling Reveals Evidence of Sequential Transcriptional Control Mechanisms. Cell Systems, 2017, 4, 330-343.e5.	2.9	42

#	Article	IF	CITATIONS
73	lκBβ enhances the generation of the low-affinity NFκB/RelA homodimer. Nature Communications, 2015, 6, 7068.	5.8	41
74	Immortalized fibroblasts from NF-κB RelA knockout mice show phenotypic heterogeneity and maintain increased sensitivity to tumor necrosis factor α after transformation by v-Ras. Oncogene, 2005, 24, 6574-6583.	2.6	40
75	Signaling Crosstalk Mechanisms That May Fine-Tune Pathogen-Responsive NFκB. Frontiers in Immunology, 2019, 10, 433.	2.2	40
76	Nuclear Export of the NF-κB Inhibitor IκBα Is Required for Proper B Cell and Secondary Lymphoid Tissue Formation. Immunity, 2011, 34, 188-200.	6.6	38
77	B-cell survival and development controlled by the coordination of NF-κB family members RelB and cRel. Blood, 2016, 127, 1276-1286.	0.6	38
78	Dissecting the Regulatory Strategies of NF-κB RelA Target Genes in the Inflammatory Response Reveals Differential Transactivation Logics. Cell Reports, 2020, 30, 2758-2775.e6.	2.9	35
79	Melanoma dedifferentiation induced by IFN-γ epigenetic remodeling in response to anti–PD-1 therapy. Journal of Clinical Investigation, 2021, 131, .	3.9	35
80	NF-κB responds to absolute differences in cytokine concentrations. Science Signaling, 2021, 14, .	1.6	34
81	Functional Hallmarks of Healthy Macrophage Responses: Their Regulatory Basis and Disease Relevance. Annual Review of Immunology, 2022, 40, 295-321.	9.5	33
82	Functional importance of stripping in NFκB signaling revealed by a stripping-impaired lκBα mutant. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1916-1921.	3.3	32
83	An NFκB Activity Calculator to Delineate Signaling Crosstalk: Type I and II Interferons Enhance NFκB via Distinct Mechanisms. Frontiers in Immunology, 2019, 10, 1425.	2.2	31
84	Paternal RLIM/Rnf12 Is a Survival Factor for Milk-Producing Alveolar Cells. Cell, 2012, 149, 630-641.	13.5	30
85	Polypyrimidine tract-binding protein blocks miRNA-124 biogenesis to enforce its neuronal-specific expression in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11061-E11070.	3.3	30
86	Defective Regulation of CXCR2 Facilitates Neutrophil Release from Bone Marrow Causing Spontaneous Inflammation in Severely NF-κB–Deficient Mice. Journal of Immunology, 2010, 185, 670-678.	0.4	29
87	Tunable Signal Processing through a Kinase Control Cycle: the IKK Signaling Node. Biophysical Journal, 2013, 105, 231-241.	0.2	28
88	Limited specificity of IRF3 and ISGF3 in the transcriptional innate-immune response to double-stranded RNA. Journal of Leukocyte Biology, 2015, 98, 119-128.	1.5	28
89	Integrating Computational and Biochemical Studies to Explore Mechanisms in NF-κB Signaling. Journal of Biological Chemistry, 2009, 284, 5439-5443.	1.6	27
90	Anatomy of a negative feedback loop: the case of I <i>κ</i> B <i>α</i> . Journal of the Royal Society Interface, 2015, 12, 20150262.	1.5	26

#	Article	IF	CITATIONS
91	Sequential conditioning-stimulation reveals distinct gene- and stimulus-specific effects of Type I and II IFN on human macrophage functions. Scientific Reports, 2019, 9, 5288.	1.6	26
92	A multiâ€scale approach reveals that NFâ€₽̂B <scp>cR</scp> el enforces a Bâ€cell decision to divide. Molecular Systems Biology, 2015, 11, 783.	3.2	25
93	Stimulus-specific responses in innate immunity: Multilayered regulatory circuits. Immunity, 2021, 54, 1915-1932.	6.6	25
94	How do pleiotropic kinase hubs mediate specific signaling by TNFR superfamily members?. Immunological Reviews, 2011, 244, 29-43.	2.8	24
95	Oscillation dynamics underlie functional switching of NF-κB for B-cell activation. Npj Systems Biology and Applications, 2016, 2, 16024.	1.4	24
96	MAP kinase p38 <i>α</i> regulates type III interferon (<i>IFN-</i> λ <i>1</i>) gene expression in human monocyte-derived dendritic cells in response to RNA stimulation. Journal of Leukocyte Biology, 2015, 97, 307-320.	1.5	22
97	Addressing the Digital Divide in Contemporary Biology: Lessons from Teaching UNIX. Trends in Biotechnology, 2017, 35, 901-903.	4.9	22
98	Identifying noise sources governing cell-to-cell variability. Current Opinion in Systems Biology, 2018, 8, 39-45.	1.3	20
99	Understanding the Logic of lκB:NF-κB Regulation in Structural Terms. Current Topics in Microbiology and Immunology, 2010, 349, 1-24.	0.7	19
100	Characterizing the Relationship between Steady State and Response Using Analytical Expressions for the Steady States of Mass Action Models. PLoS Computational Biology, 2013, 9, e1002901.	1.5	18
101	Quantifying information accumulation encoded in the dynamics of biochemical signaling. Nature Communications, 2021, 12, 1272.	5.8	18
102	An incoherent feedforward loop interprets NFκB/RelA dynamics to determine TNFâ€induced necroptosis decisions. Molecular Systems Biology, 2020, 16, e9677.	3.2	18
103	"How Do We Do This at a Distance?!―A Descriptive Study of Remote Undergraduate Research Programs during COVID-19. CBE Life Sciences Education, 2022, 21, ar1.	1.1	17
104	Identifying determinants of persistent MRSA bacteremia using mathematical modeling. PLoS Computational Biology, 2019, 15, e1007087.	1.5	16
105	Considering the kinetics of mRNA synthesis in the analysis of the genome and epigenome reveals determinants of co-transcriptional splicing. Nucleic Acids Research, 2015, 43, 699-707.	6.5	15
106	Training the 21st Century Immunologist. Trends in Immunology, 2015, 36, 283-285.	2.9	15
107	A Regulated, Ubiquitin-Independent Degron in lκBα. Journal of Molecular Biology, 2015, 427, 2748-2756.	2.0	15
108	Identifying the combinatorial control of signal-dependent transcription factors. PLoS Computational Biology, 2021, 17, e1009095.	1.5	15

#	Article	IF	CITATIONS
109	NF-κB Potentiates Caspase Independent Hydrogen Peroxide Induced Cell Death. PLoS ONE, 2011, 6, e16815.	1.1	14
110	Human DNA methylation signatures differentiate persistent from resolving MRSA bacteremia. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
111	Pathogenic TNF- \hat{l} t drives peripheral nerve inflammation in an Aire-deficient model of autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
112	A Protein Turnover Signaling Motif Controls the Stimulus-Sensitivity of Stress Response Pathways. PLoS Computational Biology, 2013, 9, e1002932.	1.5	12
113	Stimulus-specificity in the responses of immune sentinel cells. Current Opinion in Systems Biology, 2019, 18, 53-61.	1.3	12
114	FlowMax: A Computational Tool for Maximum Likelihood Deconvolution of CFSE Time Courses. PLoS ONE, 2013, 8, e67620.	1.1	11
115	Epigenetic control: slow and global, nimble and local. Genes and Development, 2008, 22, 1110-1114.	2.7	10
116	Quantifying information of intracellular signaling: progress with machine learning. Reports on Progress in Physics, 2022, 85, 086602.	8.1	10
117	Immune Response Signaling: Combinatorial and Dynamic Control. Trends in Immunology, 2016, 37, 570-572.	2.9	9
118	Coherent activation of a synthetic mammalian gene network. Systems and Synthetic Biology, 2010, 4, 15-23.	1.0	8
119	Systems biology of cellular rhythms: from cacophony to symphony. Current Opinion in Genetics and Development, 2010, 20, 571-573.	1.5	8
120	Mathematical modeling identifies potential gene structure determinants of co-transcriptional control of alternative pre-mRNA splicing. Nucleic Acids Research, 2018, 46, 10598-10607.	6.5	8
121	NK and CD8+ T cell phenotypes predict onset and control of CMV viremia after kidney transplant. JCI Insight, 2021, 6, .	2.3	8
122	A Framework for Modeling the Relationship Between Cellular Steady-state and Stimulus-responsiveness. Methods in Cell Biology, 2012, 110, 81-109.	0.5	7
123	A multi-scale mathematical modeling framework to investigate anti-viral therapeutic opportunities in targeting HIV-1 accessory proteins. Journal of Theoretical Biology, 2015, 386, 89-104.	0.8	7
124	Substrate complex competition is a regulatory motif that allows NFκB RelA to license but not amplify NFκB RelB. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10592-10597.	3.3	7
125	lκBα Nuclear Export Enables 4-1BB–Induced cRel Activation and IL-2 Production to Promote CD8 T Cell Immunity. Journal of Immunology, 2020, 205, 1540-1553.	0.4	7
126	Universal Principled Review: A Community-Driven Method to Improve Peer Review. Cell, 2019, 179, 1441-1445.	13.5	6

#	Article	IF	CITATIONS
127	Studying NF-κB Signaling with Mathematical Models. Methods in Molecular Biology, 2015, 1280, 647-661.	0.4	6
128	lκBα is required for full transcriptional induction of some NFκB-regulated genes in response to TNF in MCF-7 cells. Npj Systems Biology and Applications, 2021, 7, 42.	1.4	6
129	Acute and Chronic Changes in Gene Expression After CMV DNAemia in Kidney Transplant Recipients. Frontiers in Immunology, 2021, 12, 750659.	2.2	6
130	A stochastic spatio-temporal (SST) model to study cell-to-cell variability in HIV-1 infection. Journal of Theoretical Biology, 2016, 395, 87-96.	0.8	5
131	High Dose IFN-Î ² Activates GAF to Enhance Expression of ISGF3 Target Genes in MLE12 Epithelial Cells. Frontiers in Immunology, 2021, 12, 651254.	2.2	5
132	Ex Vivo Innate Immune Cytokine Signature of Enhanced Risk of Relapsing Brucellosis. PLoS Neglected Tropical Diseases, 2013, 7, e2424.	1.3	4
133	Of Elections and Cell-Death Decisions. Molecular Cell, 2009, 34, 257-258.	4.5	3
134	From Antibody Repertoires to Cell-Cell Interactions to Molecular Networks: Bridging Scales in the Germinal Center. Frontiers in Immunology, 2022, 13, .	2.2	3
135	Stochastic models of nucleosome dynamics reveal regulatory rules of stimulus-induced epigenome remodeling. Cell Reports, 2022, 40, 111076.	2.9	3
136	Signal Processing by the Control Cycle of the IKK Kinase in the NFκB Signaling Axis. Biophysical Journal, 2012, 102, 665a.	0.2	0
137	Deriving Quantitative Cell Biological Information from Dye-Dilution Lymphocyte Proliferation Experiments. Methods in Molecular Biology, 2018, 1707, 81-94.	0.4	Ο
138	A Temporal Code to generate Specificity in Inflammatory Signaling. FASEB Journal, 2008, 22, 538.2.	0.2	0
139	Caspaseâ€8 regulates a form of death that is distinct from apoptosis in T cells. FASEB Journal, 2008, 22, 369-369.	0.2	0
140	Combinatorial and Temporal Codes within pathogenâ€responsive Gene Regulatory Networks. FASEB Journal, 2012, 26, 228.3.	0.2	0
141	The NFkB System Regulates Flt3-Mediated Hematopoiesis. Blood, 2015, 126, 3592-3592.	0.6	0
142	Abstract 3155: Interferon-gamma-induced melanoma plasticity and response to PD-1 blockade therapy. , 2020, , .		0
143	Controlling Cancer Cell Death Types to Optimize Anti-Tumor Immunity. Biomedicines, 2022, 10, 974.	1.4	0
144	Bruins-in-Genomics: Evaluation of the impact of a UCLA undergraduate summer program in computational biology on participating students. PLoS ONE, 2022, 17, e0268861.	1.1	0