
Jae-Sang Heo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5080222/publications.pdf Version: 2024-02-01

INE-SANC HEO

#	Article	IF	CITATIONS
1	Wide-Range Motion Recognition Through Insole Sensor Using Multi-Walled Carbon Nanotubes and Polydimethylsiloxane Composites. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 581-588.	3.9	7
2	Fully-integrated wearable pressure sensor array enabled by highly sensitive textile-based capacitive ionotronic devices. Nano Energy, 2021, 79, 105479.	8.2	62
3	Conformally Gated Surface Conducting Behaviors of Single-Walled Carbon Nanotube Thin-Film-Transistors. Materials, 2021, 14, 3361.	1.3	1
4	Skin-Compatible Amorphous Oxide Thin-Film-Transistors with a Stress-Released Elastic Architecture. Applied Sciences (Switzerland), 2021, 11, 5501.	1.3	3
5	Highly Sensitive Textile-Based Capacitive Pressure Sensors Using PVDF-HFP/Ionic Liquid Composite Films. Sensors, 2021, 21, 442.	2.1	19
6	An Ultraâ€Flexible Solutionâ€Processed Metalâ€Oxide/Carbon Nanotube Complementary Circuit Amplifier with Highly Reliable Electrical and Mechanical Stability. Advanced Electronic Materials, 2020, 6, 1900845.	2.6	11
7	Textile-Based Stretchable and Flexible Glove Sensor for Monitoring Upper Extremity Prosthesis Functions. IEEE Sensors Journal, 2020, 20, 1754-1760.	2.4	28
8	Challenges in Design and Fabrication of Flexible/Stretchable Carbon- and Textile-Based Wearable Sensors for Health Monitoring: A Critical Review. Sensors, 2020, 20, 3927.	2.1	65
9	Locally Controlled Sensing Properties of Stretchable Pressure Sensors Enabled by Micro-Patterned Piezoresistive Device Architecture. Sensors, 2020, 20, 6588.	2.1	3
10	Measurement of Exciton and Trion Energies in Multistacked hBN/WS2 Coupled Quantum Wells for Resonant Tunneling Diodes. ACS Nano, 2020, 14, 16114-16121.	7.3	15
11	Frontispiece: Flexible Metal Oxide Semiconductor Devices Made by Solution Methods. Chemistry - A European Journal, 2020, 26, .	1.7	0
12	Enhanced Electro-Optical Performance of Inorganic Perovskite/a-InGaZnO Phototransistors Enabled by Sn–Pb Binary Incorporation with a Selective Photonic Deactivation. ACS Applied Materials & Interfaces, 2020, 12, 58038-58048.	4.0	9
13	Highly-Sensitive Textile Pressure Sensors Enabled by Suspended-Type All Carbon Nanotube Fiber Transistor Architecture. Micromachines, 2020, 11, 1103.	1.4	9
14	Enhanced Interfacial Integrity of Amorphous Oxide Thin-Film Transistors by Elemental Diffusion of Ternary Oxide Semiconductors. ACS Applied Materials & Interfaces, 2020, 12, 57996-58004.	4.0	11
15	Catalytic Metal-Accelerated Crystallization of High-Performance Solution-Processed Earth-Abundant Metal Oxide Semiconductors. ACS Applied Materials & Interfaces, 2020, 12, 25000-25010.	4.0	4
16	Highly Efficient Photo-Induced Charge Separation Enabled by Metal–Chalcogenide Interfaces in Quantum-Dot/Metal-Oxide Hybrid Phototransistors. ACS Applied Materials & Interfaces, 2020, 12, 16620-16629.	4.0	21
17	Flexible Metal Oxide Semiconductor Devices Made by Solution Methods. Chemistry - A European Journal, 2020, 26, 9126-9156.	1.7	28
18	A Behaviorâ€Learned Crossâ€Reactive Sensor Matrix for Intelligent Skin Perception. Advanced Materials, 2020, 32, e2000969.	11.1	61

Jae-Sang Heo

#	Article	IF	CITATIONS
19	Highly Sensitive Flexible/Stretchable Smart Insole Pressure Sensor with Multi-walled Carbon Nanotubes and Polydimethylsiloxane Double-layer Composites. , 2020, , .		3
20	A Siteâ€Specific Charge Carrier Control in Monolithic Integrated Amorphous Oxide Semiconductors and Circuits with Locally Induced Opticalâ€Doping Process. Advanced Functional Materials, 2019, 29, 1904770.	7.8	11
21	Environmentâ€Adaptable Artificial Visual Perception Behaviors Using a Lightâ€Adjustable Optoelectronic Neuromorphic Device Array. Advanced Materials, 2019, 31, e1906433.	11.1	207
22	Multi-spectral gate-triggered heterogeneous photonic neuro-transistors for power-efficient brain-inspired neuromorphic computing. Nano Energy, 2019, 66, 104097.	8.2	48
23	Facile organic surfactant removal of various dimensionality nanomaterials using low-temperature photochemical treatment. RSC Advances, 2019, 9, 730-737.	1.7	4
24	High-Speed and Low-Temperature Atmospheric Photo-Annealing of Large-Area Solution-Processed IGZO Thin-Film Transistors by Using Programmable Pulsed Operation of Xenon Flash Lamp. Journal of the Korean Physical Society, 2019, 74, 1052-1058.	0.3	6
25	Paper-Based Flexible Electrode Using Chemically-Modified Graphene and Functionalized Multiwalled Carbon Nanotube Composites for Electrophysiological Signal Sensing. Information (Switzerland), 2019, 10, 325.	1.7	28
26	Suppression of Interfacial Disorders in Solution-Processed Metal Oxide Thin-Film Transistors by Mg Doping. ACS Applied Materials & Interfaces, 2019, 11, 48054-48061.	4.0	11
27	Optimized Activation of Solutionâ€Processed Amorphous Oxide Semiconductors for Flexible Transparent Conductive Electrodes. Advanced Electronic Materials, 2018, 4, 1700386.	2.6	12
28	Recent Progress of Textileâ€Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications. Small, 2018, 14, 1703034.	5.2	470
29	Stable Logic Operation of Fiber-Based Single-Walled Carbon Nanotube Transistor Circuits Toward Thread-Like CMOS Circuitry. Materials, 2018, 11, 1878.	1.3	4
30	Pâ€136: Resistive Type 2D Mapping Positional Strain Sensor Array for Advanced Tactile Displays. Digest of Technical Papers SID International Symposium, 2018, 49, 1909-1912.	0.1	0
31	Highly Sensitive Textile Strain Sensors and Wireless User-Interface Devices Using All-Polymeric Conducting Fibers. ACS Applied Materials & amp; Interfaces, 2017, 9, 10190-10197.	4.0	153
32	Threadâ€Like CMOS Logic Circuits Enabled by Reelâ€Processed Singleâ€Walled Carbon Nanotube Transistors via Selective Doping. Advanced Materials, 2017, 29, 1701822.	11.1	37
33	Highly sensitive textile-based strain sensors using poly(3,4-ethylenedioxythiophene):polystyrene sulfonate/silver nanowire-coated nylon threads with poly- <scp>I</scp> -lysine surface modification. RSC Advances, 2017, 7, 53373-53378.	1.7	47
34	Photochemical Molecular Tailoring for Efficient Diffusion and Reorganization of Organic Nanocrystals for Ultra-Flexible Organic Semiconductor Arrays. Small, 2017, 13, 1602467.	5.2	10
35	Frequency-Stable Ionic-Type Hybrid Gate Dielectrics for High Mobility Solution-Processed Metal-Oxide Thin-Film Transistors. Materials, 2017, 10, 612.	1.3	9
36	Low-Voltage Driven Reflective-Type Flexible Display Devices with Micro-Structured Inner Reflectors and Pillar-Shaped Spacers. Journal of Nanoscience and Nanotechnology, 2016, 16, 11372-11376.	0.9	0

Jae-Sang Heo

#	Article	IF	CITATIONS
37	Water-Mediated Photochemical Treatments for Low-Temperature Passivation of Metal-Oxide Thin-Film Transistors. ACS Applied Materials & Interfaces, 2016, 8, 10403-10412.	4.0	57
38	1-Dimensional fiber-based field-effect transistors made by low-temperature photochemically activated sol–gel metal-oxide materials for electronic textiles. RSC Advances, 2016, 6, 18596-18600.	1.7	13
39	Photochemically Activated Flexible Metal-Oxide Transistors and Circuits Using Low Impurity Aqueous System. IEEE Electron Device Letters, 2015, 36, 162-164.	2.2	23
40	Enhanced Bias Stability of Solution-Processed Zinc-Tin-Oxide Thin Film Transistors Using Self-Assembled Monolayer as a Selective Channel Passivation. Journal of Nanoscience and Nanotechnology, 2013, 13, 7056-7058.	0.9	0
41	Pâ€80: WITHDRAWN: Pâ€81: Printed Organic Singleâ€crystal TFTs with Bottomâ€contact Structure. Digest of Technical Papers SID International Symposium, 2012, 43, 1354-1356.	0.1	0
42	Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films. Nature, 2012, 489, 128-132.	13.7	975