Paz Perez-Gonzalez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5080196/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A bounded-search iterated greedy algorithm for the distributed permutation flowshop scheduling problem. International Journal of Production Research, 2015, 53, 1111-1123.	4.9	170
2	A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation. European Journal of Operational Research, 2017, 257, 707-721.	3.5	155
3	A common framework and taxonomy for multicriteria scheduling problems with interfering and competing jobs: Multi-agent scheduling problems. European Journal of Operational Research, 2014, 235, 1-16.	3.5	123
4	The distributed permutation flow shop to minimise the total flowtime. Computers and Industrial Engineering, 2018, 118, 464-477.	3.4	122
5	On insertion tie-breaking rules in heuristics for the permutation flowshop scheduling problem. Computers and Operations Research, 2014, 45, 60-67.	2.4	119
6	Deterministic assembly scheduling problems: A review and classification of concurrent-type scheduling models and solution procedures. European Journal of Operational Research, 2019, 273, 401-417.	3.5	86
7	NEH-based heuristics for the permutation flowshop scheduling problem to minimise total tardiness. Computers and Operations Research, 2015, 60, 27-36.	2.4	70
8	Efficient heuristics for the hybrid flow shop scheduling problem with missing operations. Computers and Industrial Engineering, 2018, 115, 88-99.	3.4	53
9	Iterated-greedy-based algorithms with beam search initialization for the permutation flowshop to minimise total tardiness. Expert Systems With Applications, 2018, 94, 58-69.	4.4	53
10	A simheuristic algorithm to set up starting times in the stochastic parallel flowshop problem. Simulation Modelling Practice and Theory, 2018, 86, 55-71.	2.2	53
11	Using real-time information to reschedule jobs in a flowshop with variable processing times. Computers and Industrial Engineering, 2019, 129, 113-125.	3.4	52
12	Efficiency of the solution representations for the hybrid flow shop scheduling problem with makespan objective. Computers and Operations Research, 2019, 109, 77-88.	2.4	52
13	A new set of high-performing heuristics to minimise flowtime in permutation flowshops. Computers and Operations Research, 2015, 53, 68-80.	2.4	42
14	New approximate algorithms for the customer order scheduling problem with total completion time objective. Computers and Operations Research, 2017, 78, 181-192.	2.4	40
15	On heuristic solutions for the stochastic flowshop scheduling problem. European Journal of Operational Research, 2015, 246, 413-420.	3.5	37
16	New efficient constructive heuristics for the hybrid flowshop to minimise makespan: A computational evaluation of heuristics. Expert Systems With Applications, 2018, 114, 345-356.	4.4	37
17	The 2-stage assembly flowshop scheduling problem with total completion time: Efficient constructive heuristic and metaheuristic. Computers and Operations Research, 2017, 88, 237-246.	2.4	36
18	A computational evaluation of constructive and improvement heuristics for the blocking flow shop to minimise total flowtime. Expert Systems With Applications, 2016, 61, 290-301.	4.4	34

PAZ PEREZ-GONZALEZ

#	Article	IF	CITATIONS
19	Generalised accelerations for insertion-based heuristics in permutation flowshop scheduling. European Journal of Operational Research, 2020, 282, 858-872.	3.5	33
20	Order scheduling with tardiness objective: Improved approximate solutions. European Journal of Operational Research, 2018, 266, 840-850.	3.5	31
21	Constructive heuristics for the unrelated parallel machines scheduling problem with machine eligibility and setup times. Computers and Industrial Engineering, 2019, 131, 131-145.	3.4	31
22	Single machine scheduling with periodic machine availability. Computers and Industrial Engineering, 2018, 123, 180-188.	3.4	30
23	A beam-search-based constructive heuristic for the PFSP to minimise total flowtime. Computers and Operations Research, 2017, 81, 167-177.	2.4	27
24	Efficient non-population-based algorithms for the permutation flowshop scheduling problem with makespan minimisation subject to a maximum tardiness. Computers and Operations Research, 2015, 64, 86-96.	2.4	22
25	Scheduling permutation flowshops with initial availability constraint: Analysis of solutions and constructive heuristics. Computers and Operations Research, 2009, 36, 2866-2876.	2.4	20
26	New efficient constructive heuristics for the two-stage multi-machine assembly scheduling problem. Computers and Industrial Engineering, 2020, 140, 106223.	3.4	19
27	Permutation flowshop scheduling with periodic maintenance and makespan objective. Computers and Industrial Engineering, 2020, 143, 106369.	3.4	19
28	Design of a testbed for hybrid flow shop scheduling with identical machines. Computers and Industrial Engineering, 2020, 141, 106288.	3.4	18
29	Setting a common due date in a constrained flowshop: A variable neighbourhood search approach. Computers and Operations Research, 2010, 37, 1740-1748.	2.4	16
30	Relationship between common objective functions, idle time and waiting time in permutation flow shop scheduling. Computers and Operations Research, 2020, 121, 104965.	2.4	15
31	Exploring the benefits of scheduling with advanced and real-time information integration in Industry 4.0: A computational study. Journal of Industrial Information Integration, 2022, 27, 100281.	4.3	13
32	A speed-up procedure for the hybrid flow shop scheduling problem. Expert Systems With Applications, 2022, 187, 115903.	4.4	13
33	Efficient constructive and composite heuristics for the Permutation Flowshop to minimise total earliness and tardiness. Computers and Operations Research, 2016, 75, 38-48.	2.4	12
34	Assembly flowshop scheduling problem: Speed-up procedure and computational evaluation. European Journal of Operational Research, 2022, 299, 869-882.	3.5	11
35	From competitive to collaborative supply networks: A simulation study. Applied Mathematical Modelling, 2011, 35, 1054-1064.	2.2	8
36	Two novel population based algorithms for the single machine scheduling problem with sequence dependent setup times and release times. Swarm and Evolutionary Computation, 2021, 63, 100869.	4.5	8

PAZ PEREZ-GONZALEZ

#	Article	IF	CITATIONS
37	Reduction of permutation flowshop problems to single machine problems using machine dominance relations. Computers and Operations Research, 2017, 77, 96-110.	2.4	7
38	Assessing scheduling policies in a permutation flowshop with common due dates. International Journal of Production Research, 2015, 53, 5742-5754.	4.9	6
39	Available-To-Promise systems in the semiconductor industry: A review of contributions and a preliminary experiment. , 2016, , .		6
40	Hybrid flow shop with multiple servers: A computational evaluation and efficient divide-and-conquer heuristics. Expert Systems With Applications, 2020, 153, 113462.	4.4	5
41	Matheuristics for the flowshop scheduling problem with controllable processing times and limited resource consumption to minimize total tardiness. Computers and Operations Research, 2022, , 105880.	2.4	5
42	The value of real-time data in stochastic flowshop scheduling: A simulation study for makespan. , 2017, , \cdot		4
43	Single machine interfering jobs problem with flowtime objective. Journal of Intelligent Manufacturing, 2018, 29, 953-972.	4.4	4
44	Combining simulation with metaheuristics in distributed scheduling problems with stochastic processing times. , 2016, , .		2
45	New hard benchmark for the 2-stage multi-machine assembly scheduling problem: Design and computational evaluation. Computers and Industrial Engineering, 2021, 158, 107364.	3.4	2
46	Constructive heuristics for the minimization of core waiting time in permutation flow shop problems. , 2019, , .		1
47	Constructive and composite heuristics for the 2-stage assembly scheduling problem with periodic maintenance and makespan objective. Expert Systems With Applications, 2022, 206, 117824.	4.4	1
48	Boundary lines between permutation flowshop problems and single machine problems. , 2015, , .		0
49	Simulation results of optimal solution for a multiechelon inventory system. , 2017, , .		0