
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5079725/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Possible applications for municipal solid waste fly ash. Journal of Hazardous Materials, 2003, 96, 201-216.	6.5	387
2	Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Science of the Total Environment, 2013, 445-446, 237-260.	3.9	291
3	Electrokinetic remediation of organochlorines in soil: Enhancement techniques and integration with other remediation technologies. Chemosphere, 2012, 87, 1077-1090.	4.2	168
4	Biosorption of arsenic(V) with Lessonia nigrescens. Minerals Engineering, 2006, 19, 486-490.	1.8	143
5	Phosphorus recovery from sewage sludge ash through an electrodialytic process. Waste Management, 2014, 34, 886-892.	3.7	125
6	Electrodialytic Removal of Cu, Cr, and As from Chromated Copper Arsenate-Treated Timber Waste. Environmental Science & Technology, 2000, 34, 784-788.	4.6	114
7	Removal of organic contaminants from soils by an electrokinetic process: the case of atrazine Chemosphere, 2005, 59, 1229-1239.	4.2	105
8	Effects of municipal solid waste compost and sewage sludge on mineralization of soil organic matter. Soil Biology and Biochemistry, 2007, 39, 1375-1382.	4.2	90
9	Characterization of fly ash from bio and municipal waste. Biomass and Bioenergy, 2008, 32, 277-282.	2.9	78
10	Removal of Cu, Pb and Zn in an applied electric field in calcareous and non-calcareous soils. Journal of Hazardous Materials, 2001, 85, 291-299.	6.5	72
11	A dynamic model for the electrokinetic removal of copper from a polluted soil. Journal of Hazardous Materials, 1997, 56, 257-271.	6.5	70
12	Green Tea Extract Supplementation Induces the Lipolytic Pathway, Attenuates Obesity, and Reduces Low-Grade Inflammation in Mice Fed a High-Fat Diet. Mediators of Inflammation, 2013, 2013, 1-8.	1.4	70
13	Microbial diversity observed during hemp retting. Applied Microbiology and Biotechnology, 2015, 99, 4471-4484.	1.7	65
14	Removal of organic contaminants from soils by an electrokinetic process: The case of molinate and bentazone. Experimental and modeling. Separation and Purification Technology, 2011, 79, 193-203.	3.9	64
15	Removal of selected heavy metals from MSW fly ash by the electrodialytic process. Engineering Geology, 2005, 77, 339-347.	2.9	62
16	Electrokinetic remediation of six emerging organic contaminants from soil. Chemosphere, 2014, 117, 124-131.	4.2	59
17	Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants. Journal of Colloid and Interface Science, 2014, 433, 189-195.	5.0	55
18	Electrodialytic removal of heavy metals and chloride from municipal solid waste incineration fly ash and air pollution control residue in suspension – test of a new two compartment experimental cell. Electrochimica Acta, 2015, 181, 73-81.	2.6	48

#	Article	IF	CITATIONS
19	Modeling of electrokinetic processes by finite element integration of the Nernst–Planck–Poisson system of equations. Separation and Purification Technology, 2011, 79, 183-192.	3.9	47
20	Screening the possibility for removing cadmium and other heavy metals from wastewater sludge and bio-ashes by an electrodialytic method. Electrochimica Acta, 2007, 52, 3420-3426.	2.6	45
21	Simulation-based analysis of the differences in the removal rate of chlorides, nitrates and sulfates by electrokinetic desalination treatments. Electrochimica Acta, 2013, 89, 436-444.	2.6	40
22	Electrodialytic removal of tungsten and arsenic from secondary mine resources — Deep eutectic solvents enhancement. Science of the Total Environment, 2020, 710, 136364.	3.9	38
23	Emerging organic contaminants in wastewater: Understanding electrochemical reactors for triclosan and its by-products degradation. Chemosphere, 2020, 247, 125758.	4.2	37
24	Electrodialytic Removal of Heavy Metals from Different Solid Waste Products. Separation Science and Technology, 2003, 38, 1269-1289.	1.3	36
25	Electrodialytic treatment of sewage sludge: Current intensity influence on phosphorus recovery and organic contaminants removal. Chemical Engineering Journal, 2016, 306, 1058-1066.	6.6	36
26	Case study on the strategy and application of enhancement solutions to improve remediation of soils contaminated with Cu, Pb and Zn by means of electrodialysis. Engineering Geology, 2005, 77, 317-329.	2.9	35
27	A comparative study on Cu, Cr and As removal from CCA-treated wood waste by dialytic and electrodialytic processes. Journal of Hazardous Materials, 2002, 94, 147-160.	6.5	34
28	Modeling of electrokinetic desalination of bricks. Electrochimica Acta, 2012, 86, 213-222.	2.6	34
29	Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type. Chemosphere, 2015, 131, 157-163.	4.2	33
30	Computing multi-species chemical equilibrium with an algorithm based on the reaction extents. Computers and Chemical Engineering, 2013, 58, 135-143.	2.0	32
31	Treatment of a suspension of PCB contaminated soil using iron nanoparticles and electric current. Journal of Environmental Management, 2015, 151, 550-555.	3.8	32
32	Integrated perspectives of a greenhouse study to upgrade an antimony and arsenic mine soil – Potential of enhanced phytotechnologies. Chemical Engineering Journal, 2015, 262, 563-570.	6.6	31
33	Electrodialytic extraction of Cu, Pb and Cl from municipal solid waste incineration fly ash suspended in water. Journal of Chemical Technology and Biotechnology, 2006, 81, 553-559.	1.6	30
34	Qualitative mass spectrometric analysis of the volatile fraction of creosote-treated railway wood sleepers by using comprehensive two-dimensional gas chromatography. Journal of Chromatography A, 2008, 1178, 215-222.	1.8	30
35	Suitability of oil bioremediation in an Artic soil using surplus heating from an incineration facility. Environmental Science and Pollution Research, 2014, 21, 6221-6227.	2.7	30
36	Assessment of combined electro–nanoremediation of molinate contaminated soil. Science of the Total Environment, 2014, 493, 178-184.	3.9	30

#	Article	IF	CITATIONS
37	Potential of the electrodialytic process for emerging organic contaminants remediation and phosphorus separation from sewage sludge. Electrochimica Acta, 2015, 181, 109-117.	2.6	30
38	Overview of electronic tongue sensing in environmental aqueous matrices: potential for monitoring emerging organic contaminants. Environmental Reviews, 2019, 27, 202-214.	2.1	29
39	Electrodialytic remediation of CCA-treated waste wood in pilot scale. Engineering Geology, 2005, 77, 331-338.	2.9	28
40	Diagnostic analysis of electrodialysis in mine tailing materials. Electrochimica Acta, 2007, 52, 3406-3411.	2.6	27
41	Electrodialytic remediation of CCA-treated waste wood in a 2 m3 pilot plant. Science of the Total Environment, 2006, 364, 45-54.	3.9	26
42	Modeling of electrodialytic and dialytic removal of Cr, Cu and As from CCA-treated wood chips. Chemosphere, 2007, 66, 1716-1726.	4.2	26
43	Electrokinetic remediation of contaminants of emergent concern in clay soil: Effect of operating parameters. Environmental Pollution, 2019, 253, 625-635.	3.7	26
44	Enhanced Transport and Transformation of Zerovalent Nanoiron in Clay Using Direct Electric Current. Water, Air, and Soil Pollution, 2013, 224, 1.	1.1	25
45	Preliminary treatment of MSW fly ash as a way of improving electrodialytic remediation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 837-843.	0.9	24
46	Electrodialytic recovery of rare earth elements from coal ashes. Electrochimica Acta, 2020, 359, 136934.	2.6	24
47	Modeling of Electric Double-Layers Including Chemical Reaction Effects. Electrochimica Acta, 2014, 150, 263-268.	2.6	22
48	Shrinkage of self-compacting concrete. A comparative analysis. Journal of Building Engineering, 2017, 9, 117-124.	1.6	22
49	Electrically induced displacement transport of immiscible oil in saline sediments. Journal of Hazardous Materials, 2016, 313, 185-192.	6.5	21
50	Overview of mining residues incorporation in construction materials and barriers for full-scale application. Journal of Building Engineering, 2020, 29, 101215.	1.6	21
51	Emerging organic contaminants in soil irrigated with effluent: electrochemical technology as a remediation strategy. Science of the Total Environment, 2020, 743, 140544.	3.9	20
52	Polyelectrolyte Based Sensors as Key to Achieve Quantitative Electronic Tongues: Detection of Triclosan on Aqueous Environmental Matrices. Nanomaterials, 2020, 10, 640.	1.9	20
53	Effect of different extracting solutions on the electrodialytic remediation of CCA-treated wood waste Part I Journal of Hazardous Materials, 2004, 107, 103-113.	6.5	19

54 Electrokinetics Across Disciplines and Continents. , 2016, , .

#	Article	IF	CITATIONS
55	Electrodialytic phosphorus recovery from sewage sludge ash under kinetic control. Electrochimica Acta, 2018, 287, 49-59.	2.6	18
56	Effects from different types of construction refuse in the soil on electrodialytic remediation. Journal of Hazardous Materials, 2002, 91, 205-219.	6.5	16
57	Regressional modeling of electrodialytic removal of Cu, Cr and As from CCA treated timber waste: application to sawdust. Wood Science and Technology, 2005, 39, 291-309.	1.4	16
58	Effect of Major Constituents of MSW Fly Ash During Electrodialytic Remediation of Heavy Metals. Separation Science and Technology, 2005, 40, 2007-2019.	1.3	16
59	Electrodialytic remediation of suspended mine tailings. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 832-836.	0.9	16
60	Assessing fly ash treatment: Remediation and stabilization of heavy metals. Journal of Environmental Management, 2010, 95 Suppl, S110-5.	3.8	16
61	Electrodialytic Remediation of Soil Slurry–Removal of Cu, Cr, and As. Separation Science and Technology, 2009, 44, 2245-2268.	1.3	15
62	Electrokinetic removal of creosote from treated timber waste: a comprehensive gas chromatographic view. Journal of Applied Electrochemistry, 2010, 40, 1183-1193.	1.5	15
63	Valorisation of ferric sewage sludge ashes: Potential as a phosphorus source. Waste Management, 2016, 52, 193-201.	3.7	15
64	Influence of the cell design in the electroremoval of PPCPs from soil slurry. Chemical Engineering Journal, 2017, 326, 162-168.	6.6	15
65	Irrigation of soil with reclaimed wastewater acts as a buffer of microbial taxonomic and functional biodiversity. Science of the Total Environment, 2022, 802, 149671.	3.9	15
66	Influence of electrolyte and voltage on the direct current enhanced transport of iron nanoparticles in clay. Chemosphere, 2014, 99, 171-179.	4.2	14
67	ELECTRODIALYTIC PROCESS OF NANOFILTRATION CONCENTRATES – PHOSPHORUS RECOVERY AND MICROCYSTINS REMOVAL. Electrochimica Acta, 2015, 181, 200-207.	2.6	14
68	Numerical prediction of diffusion and electric field-induced iron nanoparticle transport. Electrochimica Acta, 2015, 181, 5-12.	2.6	14
69	Exploring hydrogen production for self-energy generation in electroremediation: A proof of concept. Applied Energy, 2019, 255, 113839.	5.1	14
70	Electronic Tongue Coupled to an Electrochemical Flow Reactor for Emerging Organic Contaminants Real Time Monitoring. Sensors, 2019, 19, 5349.	2.1	14
71	Location model for CCA-treated wood waste remediation units using GIS and clustering methods. Environmental Modelling and Software, 2007, 22, 1788-1795.	1.9	13
72	Heavy metals in MSW incineration fly ashes. European Physical Journal Special Topics, 2003, 107, 463-466.	0.2	12

#	Article	IF	CITATIONS
73	Electroremediation of straw and co-combustion ash under acidic conditions. Journal of Hazardous Materials, 2009, 161, 1003-1009.	6.5	12
74	Remediation potential of caffeine, oxybenzone, and triclosan by the salt marsh plants Spartina maritima and Halimione portulacoides. Environmental Science and Pollution Research, 2018, 25, 35928-35935.	2.7	11
75	Electrodialytic 2-compartment cells for emerging organic contaminants removal from effluent. Journal of Hazardous Materials, 2018, 358, 467-474.	6.5	11
76	Electro-bioremediation of a mixture of structurally different contaminants of emerging concern: Uncovering electrokinetic contribution. Journal of Hazardous Materials, 2021, 406, 124304.	6.5	11
77	Relationship Between Cu and Zn Extractable Foliar Contents and BCR Sequential Extraction in Soil Treated with Organic Amendments. Environmental Technology (United Kingdom), 2006, 27, 1357-1367.	1.2	10
78	Experimental and modeling of the electrodialytic and dialytic treatment of a fly ash containing Cd, Cu and Pb. Journal of Applied Electrochemistry, 2010, 40, 1689-1697.	1.5	10
79	Phosphorus Recovery in Sewage Sludge by Electrokinetic Based Technologies: A Multivariate and Circular Economy View. Waste and Biomass Valorization, 2017, 8, 1587-1596.	1.8	10
80	Sustainability of construction materials: Electrodialytic technology as a tool for mortars production. Journal of Hazardous Materials, 2019, 363, 421-427.	6.5	10
81	Electrodialytic Hydrogen Production and Critical Raw Materials Recovery from Secondary Resources. Water (Switzerland), 2020, 12, 1262.	1.2	10
82	Nanoremediation Coupled to Electrokinetics for PCB Removal from Soil. , 2016, , 331-350.		9
83	Comparative assessment of LECA and Spartina maritima to remove emerging organic contaminants from wastewater. Environmental Science and Pollution Research, 2017, 24, 7208-7215.	2.7	8
84	Copper and Chromium Electrodialytic Migration in CCA-Treated Timber Waste. Water, Air, and Soil Pollution, 2005, 160, 27-39.	1.1	7
85	Electrodialytic removal of Cd from straw ash in a pilot plant. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2008, 43, 844-851.	0.9	7
86	Combination of inclusive and differential \$\$ mathrm{t}overline{mathrm{t}} \$\$ charge asymmetry measurements using ATLAS and CMS data at \$\$ sqrt{s}=7 \$\$ and 8 TeV. Journal of High Energy Physics, 2018, 2018, 1.	1.6	7
87	Effect of mining residues treated with an electrodialytic technology on cement-based mortars. Cleaner Engineering and Technology, 2020, 1, 100001.	2.1	7
88	Electrokinetic Soil Remediation: An Overview. , 2016, , 3-18.		6
89	Electrodialytic treatment of secondary mining resources for raw materials extraction: Reactor design assessment. Science of the Total Environment, 2021, 752, 141822.	3.9	6
90	Cement-based mortars production applying mining residues treated with an electro-based technology and a thermal treatment: Technical and economic effects. Construction and Building Materials, 2021, 280, 122483.	3.2	6

#	Article	IF	CITATIONS
91	Phytoremediation and the Electrokinetic Process: Potential Use for the Phytoremediation of Antimony and Arsenic. , 2015, , 199-209.		6
92	Phosphorus Recovery from a Water Reservoir–Potential of Nanofiltration Coupled to Electrodialytic Process. Waste and Biomass Valorization, 2013, 4, 675-681.	1.8	5
93	Phosphorus recovery from waters using nanofiltration. Desalination and Water Treatment, 0, , 1-8.	1.0	5
94	Remediation of Pharmaceutical and Personal Care Products (PPCPs) in Constructed Wetlands: Applicability and New Perspectives. , 2017, , 277-292.		5
95	Bioremediation of sediments contaminated with polycyclic aromatic hydrocarbons: the technological innovation patented review. International Journal of Environmental Science and Technology, 2022, 19, 5697-5720.	1.8	5
96	Incorporation of Different Fly Ashes from MSWI as Substitute for Cement in Mortar: An Overview of the Suitability of Electrodialytic Pre-treatment. , 2016, , 225-247.		5
97	Electrochemical desalination of historic Portuguese tiles–ÂRemoval of chlorides, nitrates and sulfates. Journal of Cultural Heritage, 2015, 16, 712-718.	1.5	4
98	Electrodialytic treatment of sewage sludge: influence on microbiological community. International Journal of Environmental Science and Technology, 2018, 15, 1103-1112.	1.8	4
99	Electrodialytic Arsenic Removal from Bulk and Pre-treated Soil. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	4
100	Electrochemical Treatment of Effluent for the Removal of Contaminants of Emergent Concern and Culturable Microorganisms. Water (Switzerland), 2021, 13, 520.	1.2	4
101	An application of discriminant analysis to pattern recognition of selected contaminated soil features in thin sections. Geoderma, 1997, 76, 253-262.	2.3	3
102	Electro-technologies for the removal of 2,4,6-trichloroanisole from naturally contaminated cork discs: Reactor design and proof of concept. Chemical Engineering Journal, 2019, 361, 80-88.	6.6	3
103	Life Cycle Assessment of Electrodialytic Technologies to Recover Raw Materials from Mine Tailings. Sustainability, 2021, 13, 3915.	1.6	3
104	Optimization of Electric Field Assisted Mining Process Applied to Rare Earths in Soils. Applied Sciences (Switzerland), 2021, 11, 6316.	1.3	3
105	Electrokinetically Enabled De-swelling of Clay. , 2016, , 43-56.		3
106	The Kinetic Parameters Evaluation for the Adsorption Processes at "Liquid–Solid―Interface. , 2016, , 81-109.		3
107	Removal of arsenic from toxic ash after combustion of impregnated wood. European Physical Journal Special Topics, 2003, 107, 993-996.	0.2	3
108	Electrodialytic Removal of Cu, Cr and As from Treated Wood. , 2005, , 235-241.		2

7

#	Article	IF	CITATIONS
109	Electrokinetics and Zero Valent Iron Nanoparticles: Experimental and Modeling of the Transport in Different Porous Media. , 2016, , 279-294.		2
110	Life Cycle Assessment of Mortars Produced Partially Replacing Cement by Treated Mining Residues. Applied Sciences (Switzerland), 2021, 11, 7947.	1.3	2
111	Analysis of Alkylphenols and Phthalates in Vegetables Using SPME and Comprehensive Two-dimensional Gas Chromatography. Current Chromatography, 2018, 5, 65-71.	0.1	1
112	Phytoremediation Coupled to Electrochemical Process for Arsenic Removal from Soil. , 2016, , 313-329.		1
113	Applying Chemometrics to Evaluate Tungsten Mining Residues Potential As Partial Cement Replacement. KnE Engineering, 0, , .	0.1	1
114	Modelling of Electrokinetic Processes in Civil and Environmental Engineering Applications. , 0, , .		1
115	Monitoring pesticides in post-consumer containers by GC/TOFMS and HPLC/DAD after the triple rinse method. International Journal of Environmental Analytical Chemistry, 2024, 104, 867-878.	1.8	1
116	Electrokinetic Removal of Herbicides from Soils. , 0, , 249-264.		0
117	Quantitative Analysis of Endocrine Disruptors by Comprehensive Two-Dimensional Gas Chromatography. Journal of the Brazilian Chemical Society, 2015, , .	0.6	0
118	Electrochemical Process for Phosphorus Recovery from Wastewater Treatment Plants. , 2016, , 129-141.		0
119	Removal of Pharmaceutical and Personal Care Products in Aquatic Plant-Based Systems. , 2016, , 351-372.		0
120	Triclosan Detection in Aqueous Environmental Matrices by Thin-Films Sensors. Proceedings (mdpi), 2019, 15, .	0.2	0
121	Application of biregressional designs to electrodialytic removal of heavy metals from contaminated matrices. Discussiones Mathematicae Probability and Statistics, 2010, 30, 123.	0.1	0
122	Life Cycle Assessment of Soil and Groundwater Remediation: Groundwater Impacts of Electrokinetic Remediation. , 2016, , 173-202.		0
123	Electrochemical Process for Phosphorus Recovery from Water Treatment Plants. , 2016, , 113-128.		0
124	Leaching of Cr from wood ash – discussion based on different extraction procedures. , 2019, , 408-413.		0
125	Extraction of rare earth elements via electric field assisted mining applying deep eutectic solvents. Sustainable Chemistry and Pharmacy, 2022, 26, 100638.	1.6	0