Xiaodong Qian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5079587/publications.pdf

Version: 2024-02-01

394421 395702 33 1,626 19 citations g-index h-index papers

33 33 33 1684 docs citations times ranked citing authors all docs

33

#	Article	IF	CITATIONS
1	In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements. Journal of Materials Chemistry, 2011, 21, 13290.	6.7	362
2	Self-assembly of exfoliated molybdenum disulfide (MoS 2) nanosheets and layered double hydroxide (LDH): Towards reducing fire hazards of epoxy. Journal of Hazardous Materials, 2017, 338, 343-355.	12.4	186
3	Organic/inorganic flame retardants containing phosphorus, nitrogen and silicon: Preparation and their performance on the flame retardancy of epoxy resins as a novel intumescent flame retardant system. Materials Chemistry and Physics, 2014, 143, 1243-1252.	4.0	168
4	Novel organic–inorganic flame retardants containing exfoliated graphene: preparation and their performance on the flame retardancy of epoxy resins. Journal of Materials Chemistry A, 2013, 1, 6822.	10.3	163
5	Combustion and Thermal Degradation Mechanism of a Novel Intumescent Flame Retardant for Epoxy Acrylate Containing Phosphorus and Nitrogen. Industrial & Engineering Chemistry Research, 2011, 50, 1881-1892.	3.7	117
6	Silicon nanoparticle decorated graphene composites: preparation and their reinforcement on the fire safety and mechanical properties of polyurea. Journal of Materials Chemistry A, 2013, 1, 9827.	10.3	65
7	Novel Flame Retardants Containing 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and Unsaturated Bonds: Synthesis, Characterization, and Application in the Flame Retardancy of Epoxy Acrylates. Industrial & Engineering Chemistry Research, 2013, 52, 7307-7315.	3.7	65
8	CuO/Graphene Nanohybrids: Preparation and Enhancement on Thermal Stability and Smoke Suppression of Polypropylene. Industrial & Engineering Chemistry Research, 2013, 52, 13654-13660.	3.7	58
9	Graphite oxide/polyurea and graphene/polyurea nanocomposites: A comparative investigation on properties reinforcements and mechanism. Composites Science and Technology, 2013, 74, 228-234.	7.8	58
10	Thermal Properties of Novel 9,10-Dihydro-9-oxa-10-phosphaphenanthrene 10-Oxide-based Organic/Inorganic Hybrid Materials Prepared by Sol–Gel and UV-Curing Processes. Industrial & Engineering Chemistry Research, 2012, 51, 85-94.	3.7	56
11	Novel DOPO-based epoxy curing agents. Journal of Thermal Analysis and Calorimetry, 2016, 126, 1339-1348.	3.6	34
12	Thermal degradation and combustion behavior of intumescent flameâ€retardant polypropylene with novel phosphorusâ€based flame retardants. Journal of Applied Polymer Science, 2018, 135, 45962.	2.6	33
13	Phosphorylated chitosanâ€cobalt complex: A novel green flame retardant for polylactic acid. Polymers for Advanced Technologies, 2018, 29, 860-866.	3.2	31
14	Thermal degradation and combustion behavior of flame-retardant epoxy resins with novel phosphorus-based flame retardants and silicon particles. Polymer Bulletin, 2019, 76, 3607-3619.	3.3	25
15	Estimating the feasibility of using industrial solid wastes as raw material for polyurethane composites with low fire hazards. Journal of Cleaner Production, 2020, 257, 120606.	9.3	23
16	Green, tough and highly efficient flame-retardant rigid polyurethane foam enabled by double network hydrogel coatings. Soft Matter, 2021, 17, 10555-10565.	2.7	22
17	Synthesis of organophosphorus modified nanoparticles and their reinforcements on the fire safety and mechanical properties of polyurea. Materials Chemistry and Physics, 2013, 139, 443-449.	4.0	21
18	Synergistic effects of ferric pyrophosphate (FePP) in intumescent flameâ€retardant polypropylene. Polymers for Advanced Technologies, 2011, 22, 870-876.	3. 2	20

#	Article	IF	CITATIONS
19	Musselâ€inspired decoration of Ni(OH) ₂ nanosheets on 2D MoS ₂ towards enhancing thermal and flame retardancy properties of poly(lactic acid). Polymers for Advanced Technologies, 2019, 30, 879-888.	3.2	19
20	A novel flame retardant containing calixarene and DOPO structures: Preparation and its application on the fire safety of polystyrene. Polymers for Advanced Technologies, 2018, 29, 2715-2723.	3.2	13
21	Novel phosphorusâ€based flame retardants containing 4â€ <i>tert</i> à€butylcalix[4]arene: Preparation and application for the fire safety of epoxy resins. Journal of Applied Polymer Science, 2017, 134, 45105.	2.6	12
22	The effect of OCoAlâ€LDH and OCoFeâ€LDH on the combustion behaviors of polyvinyl chloride. Polymers for Advanced Technologies, 2020, 31, 675-685.	3.2	12
23	Functionalized CNTs with DOPO and Silicon Containing Agents: Effective Reinforcer for Thermal and Flame Retardant Properties of Polystyrene Nanocomposites. Frontiers in Chemistry, 2020, 8, 627642.	3.6	10
24	CNT modified layered î±-MnO ₂ hybrid flame retardants: preparation and their performance in the flame retardancy of epoxy resins. RSC Advances, 2020, 10, 27408-27417.	3.6	8
25	Preparation of poly(methyl methacrylate)/silicon particle composites and the study of the properties improvement. Journal of Polymer Research, 2017, 24, 1.	2.4	7
26	Phosphorylated cellulose/Fe ³⁺ complex: A novel flame retardant for epoxy resins. Polymers for Advanced Technologies, 2021, 32, 183-189.	3.2	7
27	Functionalized graphene with DOPO based organic/inorganic flame retardants: Preparation and its reinforcements on the flame retardancy of polyurea composites. Polymer Composites, 2018, 39, 4637-4645.	4.6	6
28	The study of coupling effects of humidityâ€heat on the protection performance of protective clothing for fire fighting. Fire and Materials, 2020, 44, 923-934.	2.0	6
29	Research on the influence of wollastonite fibers on the stability of foam extinguishment agent and its effect on the extinguishing efficiency of pool fire. Fire and Materials, 2020, 44, 1053-1063.	2.0	5
30	Effect of Phosphorus-Based Flame Retardants and PA6 on the Flame Retardancy and Thermal Degradation of Polypropylene. Polymer-Plastics Technology and Engineering, 2018, 57, 1567-1575.	1.9	4
31	The study of ZnAl and ZnFe layered double hydroxide on the catalytic dechlorination and fire safety of polyvinyl chloride. Journal of Thermal Analysis and Calorimetry, 2020, 140, 115-123.	3.6	4
32	Influence of \hat{l}^2 -FeOOH nanorods and ammonium polyphosphate on reducing the fire hazard of epoxy resins composites. Journal of Thermal Analysis and Calorimetry, 2022, 147, 3599-3607.	3.6	4
33	Research on the influence of driving gas types in compound jet on extinguishing the pool fire. Journal of Hazardous Materials, 2019, 363, 152-160.	12.4	2