Lazaros Oreopoulos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/507940/publications.pdf

Version: 2024-02-01

85 papers 3,605 citations

147566 31 h-index 56 g-index

104 all docs

104 docs citations

104 times ranked 4264 citing authors

#	Article	IF	Citations
1	Free Access to Landsat Imagery. Science, 2008, 320, 1011-1011.	6.0	727
2	THE I3RC: Bringing Together the Most Advanced Radiative Transfer Tools for Cloudy Atmospheres. Bulletin of the American Meteorological Society, 2005, 86, 1275-1294.	1.7	192
3	Strong constraints on aerosol–cloud interactions from volcanic eruptions. Nature, 2017, 546, 485-491.	13.7	191
4	How small is a small cloud?. Atmospheric Chemistry and Physics, 2008, 8, 3855-3864.	1.9	113
5	The Continual Intercomparison of Radiation Codes: Results from Phase I. Journal of Geophysical Research, 2012, 117, .	3.3	112
6	Positive low cloud and dust feedbacks amplify tropical North Atlantic Multidecadal Oscillation. Geophysical Research Letters, 2016, 43, 1349-1356.	1.5	99
7	Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative Transfer Experiment. Atmospheric Chemistry and Physics, 2013, 13, 2347-2379.	1.9	94
8	Estimating the direct radiative effect of absorbing aerosols overlying marine boundary layer clouds in the southeast Atlantic using MODIS and CALIOP. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4801-4815.	1.2	80
9	Plane Parallel Albedo Biases from Satellite Observations. Part I: Dependence on Resolution and Other Factors. Journal of Climate, 1998, 11, 919-932.	1.2	74
10	Accounting for subgridâ€scale cloud variability in a multiâ€layer 1d solar radiative transfer algorithm. Quarterly Journal of the Royal Meteorological Society, 1999, 125, 301-330.	1.0	73
11	Implementation on Landsat Data of a Simple Cloud-Mask Algorithm Developed for MODIS Land Bands. IEEE Geoscience and Remote Sensing Letters, 2011, 8, 597-601.	1.4	72
12	Influence of Ice Particle Surface Roughening on the Global Cloud Radiative Effect. Journals of the Atmospheric Sciences, 2013, 70, 2794-2807.	0.6	72
13	Radiative effects of global MODIS cloud regimes. Journal of Geophysical Research D: Atmospheres, 2016, 121, 2299-2317.	1.2	65
14	Shortwave direct radiative effects of above-cloud aerosols over global oceans derived from 8Âyears of CALIOP and MODIS observations. Atmospheric Chemistry and Physics, 2016, 16, 2877-2900.	1.9	59
15	Radiative flux and forcing parameterization error in aerosolâ€free clear skies. Geophysical Research Letters, 2015, 42, 5485-5492.	1.5	57
16	The cloud radiative effects of International Satellite Cloud Climatology Project weather states. Journal of Geophysical Research, 2011, 116, .	3.3	56
17	Cloud characterization and clear-sky correction from Landsat-7. Remote Sensing of Environment, 2001, 78, 83-98.	4.6	51
18	Cloud Inhomogeneity from MODIS. Journal of Climate, 2005, 18, 5110-5124.	1.2	48

#	Article	IF	CITATIONS
19	An examination of the nature of global MODIS cloud regimes. Journal of Geophysical Research D: Atmospheres, 2014, 119, 8362-8383.	1.2	48
20	New insights about cloud vertical structure from CloudSat and CALIPSO observations. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9280-9300.	1.2	47
21	Observational Evidence of Increasing Global Radiative Forcing. Geophysical Research Letters, 2021, 48, e2020GL091585.	1.5	45
22	Overlap properties of clouds generated by a cloud-resolving model. Journal of Geophysical Research, 2003, 108, .	3.3	41
23	Radiative susceptibility of cloudy atmospheres to droplet number perturbations: 2. Global analysis from MODIS. Journal of Geophysical Research, 2008, 113, .	3.3	38
24	Role of updraft velocity in temporal variability of global cloud hydrometeor number. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5791-5796.	3.3	38
25	Accounting for subgrid-scale cloud variability in a multi-layer ID solar radiative transfer algorithm. Quarterly Journal of the Royal Meteorological Society, 1999, 125, 301-330.	1.0	38
26	Cloud three-dimensional effects evidenced in Landsat spatial power spectra and autocorrelation functions. Journal of Geophysical Research, 2000, 105, 14777-14788.	3.3	37
27	Accurate satellite-derived estimates of the tropospheric ozone impact on the global radiation budget. Atmospheric Chemistry and Physics, 2009, 9, 4447-4465.	1.9	36
28	Impact of tropospheric nitrogen dioxide on the regional radiation budget. Atmospheric Chemistry and Physics, 2009, 9, 6389-6400.	1.9	36
29	MODELING: The Continual Intercomparison of Radiation Codes (CIRC). Bulletin of the American Meteorological Society, 2010, 91, 305-310.	1.7	36
30	On the global character of overlap between low and high clouds. Geophysical Research Letters, 2013, 40, 5320-5326.	1.5	36
31	Plane Parallel Albedo Biases from Satellite Observations. Part II: Parameterizations for Bias Removal. Journal of Climate, 1998, 11, 933-944.	1.2	35
32	Path radiance technique for retrieving aerosol optical thickness over land. Journal of Geophysical Research, 1999, 104, 31321-31332.	3.3	35
33	Enhancing a Simple MODIS Cloud Mask Algorithm for the Landsat Data Continuity Mission. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51, 723-731.	2.7	35
34	Radiative impacts of cloud heterogeneity and overlap in an atmospheric General Circulation Model. Atmospheric Chemistry and Physics, 2012, 12, 9097-9111.	1.9	34
35	Modeling the influences of aerosols on pre-monsoon circulation and rainfall over Southeast Asia. Atmospheric Chemistry and Physics, 2014, 14, 6853-6866.	1.9	33
36	Impact of cumulus cloud spacing on Landsat atmospheric correction and aerosol retrieval. Journal of Geophysical Research, 2001, 106, 12129-12138.	3.3	31

#	Article	IF	CITATIONS
37	A novel method for estimating shortwave direct radiative effect of above-cloud aerosols using CALIOP and MODIS data. Atmospheric Measurement Techniques, 2014, 7, 1777-1789.	1.2	31
38	The Precipitation Characteristics of ISCCP Tropical Weather States. Journal of Climate, 2013, 26, 772-788.	1.2	29
39	Statistical Dependence of Albedo and Cloud Cover on Sea Surface Temperature for Two Tropical Marine Stratocumulus Regions. Journal of Climate, 1993, 6, 2434-2447.	1.2	27
40	New directions in the radiative transfer of cloudy atmospheres. Eos, 2006, 87, 52.	0.1	27
41	An analysis of cloud overlap at a midlatitude atmospheric observation facility. Atmospheric Chemistry and Physics, 2011, 11, 5557-5567.	1.9	25
42	Aerosol indirect effect on tropospheric ozone via lightning. Journal of Geophysical Research, 2012, 117, .	3.3	24
43	Radiative susceptibility of cloudy atmospheres to droplet number perturbations: 1. Theoretical analysis and examples from MODIS. Journal of Geophysical Research, 2008, 113, .	3.3	23
44	Observations of Local Positive Low Cloud Feedback Patterns and Their Role in Internal Variability and Climate Sensitivity. Geophysical Research Letters, 2018, 45, 4438-4445.	1.5	23
45	The Role of Thermodynamic Phase Shifts in Cloud Optical Depth Variations With Temperature. Geophysical Research Letters, 2019, 46, 4502-4511.	1.5	23
46	Regime-based evaluation of cloudiness in CMIP5 models. Climate Dynamics, 2017, 48, 89-112.	1.7	22
47	On the Removal of the Effect of Horizontal Fluxes In Twoâ€Aircraft Measurements of Cloud Absorption. Quarterly Journal of the Royal Meteorological Society, 1999, 125, 2153-2170.	1.0	21
48	The impact of subsampling on MODIS level-3 statistics of cloud optical thickness and effective radius. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43, 366-373.	2.7	21
49	The Plane-Parallel Albedo Bias of Liquid Clouds from MODIS Observations. Journal of Climate, 2007, 20, 5114-5125.	1.2	21
50	Representation of 3D heterogeneous cloud fields using copulas: Theory for water clouds. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 1843-1864.	1.0	21
51	Contributions of the ARM Program to Radiative Transfer Modeling for Climate and Weather Applications. Meteorological Monographs, 2016, 57, 15.1-15.19.	5.0	20
52	Using MODIS cloud regimes to sort diagnostic signals of aerosol loudâ€precipitation interactions. Journal of Geophysical Research D: Atmospheres, 2017, 122, 5416-5440.	1.2	19
53	Horizontal radiative fluxes in clouds and accuracy of the independent pixel approximation at absorbing wavelengths. Geophysical Research Letters, 1999, 26, 1585-1588.	1.5	18
54	Automatically Finding Ship Tracks to Enable Largeâ€Scale Analysis of Aerosolâ€Cloud Interactions. Geophysical Research Letters, 2019, 46, 7726-7733.	1.5	18

#	Article	IF	Citations
55	A Global Climatology of Outgoing Longwave Spectral Cloud Radiative Effect and Associated Effective Cloud Properties. Journal of Climate, 2014, 27, 7475-7492.	1.2	17
56	Interregional differences in MODIS-derived cloud regimes. Journal of Geophysical Research D: Atmospheres, 2016, 121, 11,648-11,665.	1.2	17
57	A Deterministic Self-Organizing Map Approach and its Application on Satellite Data based Cloud Type Classification. , 2018, , .		16
58	Longwave Band-By-Band Cloud Radiative Effect and Its Application in GCM Evaluation. Journal of Climate, 2013, 26, 450-467.	1.2	14
59	Performance of McRAS-AC in the GEOS-5 AGCM: aerosol-cloud-microphysics, precipitation, cloud radiative effects, and circulation. Geoscientific Model Development, 2013, 6, 57-79.	1.3	13
60	A New Normalized Difference Cloud Retrieval Technique Applied to Landsat Radiances over the Oklahoma ARM Site. Journal of Applied Meteorology and Climatology, 2000, 39, 2305-2321.	1.7	12
61	Simplified ISCCP cloud regimes for evaluating cloudiness in CMIP5 models. Climate Dynamics, 2017, 48, 113-130.	1.7	12
62	A Global Survey of Apparent Aerosolâ€Cloud Interaction Signals. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031287.	1.2	12
63	The shortwave radiative forcing bias of liquid and ice clouds from MODIS observations. Atmospheric Chemistry and Physics, 2009, 9, 5865-5875.	1.9	11
64	Sensitivity of cirrus and mixed-phase clouds to the ice nuclei spectra in McRAS-AC: single column model simulations. Atmospheric Chemistry and Physics, 2012, 12, 10679-10692.	1.9	11
65	Evaluating rainfall errors in global climate models through cloud regimes. Climate Dynamics, 2018, 50, 3301-3314.	1.7	11
66	Aerosol Properties in Cloudy Environments from Remote Sensing Observations: A Review of the Current State of Knowledge. Bulletin of the American Meteorological Society, 2021, 102, E2177-E2197.	1.7	11
67	Contrasting the co-variability of daytime cloud and precipitation over tropical land and ocean. Atmospheric Chemistry and Physics, 2018, 18, 3065-3082.	1.9	10
68	Performance of Goddard earth observing system GCM column radiation models under heterogeneous cloud conditions. Atmospheric Research, 2004, 72, 365-382.	1.8	9
69	Subgrid Precipitation Properties of Mesoscale Atmospheric Systems Represented by MODIS Cloud Regimes. Journal of Climate, 2019, 32, 1797-1812.	1.2	9
70	Daytime Variability of Cloud Fraction From DSCOVR/EPIC Observations. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031488.	1.2	9
71	Applying deep learning to NASA MODIS data to create a community record of marine low-cloud mesoscale morphology. Atmospheric Measurement Techniques, 2020, 13, 6989-6997.	1.2	9
72	Consistency of ARESE II cloud absorption estimates and sampling issues. Journal of Geophysical Research, 2003, 108, AAC 13-1.	3.3	8

#	Article	IF	Citations
73	Largeâ€Scale Characteristics of Tropical Convective Systems Through the Prism of Cloud Regime. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031157.	1.2	8
74	Classifying planetary cloudiness with an updated set of MODIS Cloud Regimes. Journal of Applied Meteorology and Climatology, $2021, , .$	0.6	7
75	Cloud-Precipitation Hybrid Regimes and their Projection onto IMERG Precipitation Data. Journal of Applied Meteorology and Climatology, $2021, \ldots$	0.6	6
76	Identifying meteorological influences on marine low-cloud mesoscale morphology using satellite classifications. Atmospheric Chemistry and Physics, 2021, 21, 9629-9642.	1.9	6
77	Reconciliation of modeled climate responses to spectral solar forcing. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6281-6289.	1.2	5
78	Global Daytime Variability of Clouds From DSCOVR/EPIC Observations. Geophysical Research Letters, 2021, 48, e2020GL091511.	1.5	4
79	Understanding the microphysical control and spatialâ€temporal variability of warm rain probability using CloudSat and MODIS observations. Geophysical Research Letters, 0, , .	1.5	4
80	An evaluation of clouds and radiation in a large-scale atmospheric model using a cloud vertical structure classification. Geoscientific Model Development, 2020, 13, 673-684.	1.3	3
81	Cloud Height Daytime Variability From DSCOVR/EPIC and GOES-R/ABI Observations. Frontiers in Remote Sensing, 2022, 3, .	1.3	2
82	Evaluation of GPROF V05 Precipitation Retrievals under Different Cloud Regimes. Journal of Hydrometeorology, $2021, \ldots$	0.7	2
83	A New Organization Metric for Synoptic Scale Tropical Convective Aggregation. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	2
84	The Continual Intercomparison of Radiation Codes (CIRC): A New Standard for Evaluating GCM Radiation Codes., 2009,,.		0
85	The Shortwave Radiative Forcing Bias of Homogeneous Liquid and Ice Clouds Observed by MODIS. , 2009, , .		O