Francois Chevire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5079360/publications.pdf

Version: 2024-02-01

331670 361022 1,451 69 21 citations h-index papers

g-index 73 73 73 1938 docs citations times ranked citing authors all docs

35

#	Article	IF	Citations
1	Selective CO2 reduction into formate using Ln–Ta oxynitrides combined with a binuclear Ru(II) complex under visible light. Journal of Energy Chemistry, 2021, 55, 176-182.	12.9	14
2	Investigation on Chalcogenide Glass Additive Manufacturing for Shaping Mid-infrared Optical Components and Microstructured Optical Fibers. Crystals, 2021, 11, 228.	2.2	12
3	Elaboration of chalcogenide microstructured optical fibers preform by 3D additive manufacturing. , 2021, , .		O
4	Synthesis and photoluminescence properties of Mn2+ doped Ca1-xSrxCN2 phosphors prepared by a carbon nitride based route. Journal of Solid State Chemistry, 2021, 300, 122240.	2.9	8
5	Perovskite (Sr2Ta2O7)100â^'x(La2Ti2O7)x ceramics: From dielectric characterization to dielectric resonator antenna applications. Journal of Alloys and Compounds, 2021, 872, 159728.	5.5	19
6	Synthesis and photoluminescence properties of Mn2+ doped ZnCN2 phosphors. Open Ceramics, 2021, 7, 100157.	2.0	2
7	Mid-infrared hollow core fiber drawn from a 3D printed chalcogenide glass preform. Optical Materials Express, 2021, 11, 198.	3.0	37
8	Effect of cationic substitutions on the photoluminescence properties of Eu2+ doped SrCN2 prepared by a facile C3N4 based synthetic approach. Journal of the European Ceramic Society, 2020, 40, 6316-6321.	5.7	4
9	Mechanochemical synthesis and structural characterization of gallium sulfide Ga2S3. Journal of Solid State Chemistry, 2020, 292, 121743.	2.9	9
10	Effect of P/Bi substitution on optical and thermal properties of Ga-Ge-Se-Te glasses. Journal of Alloys and Compounds, 2020, 835, 155224.	5.5	1
11	Structural and photoelectrochemical properties of SrTaO2N oxynitride thin films deposited by reactive magnetron sputtering. Journal of the European Ceramic Society, 2020, 40, 6301-6308.	5.7	2
12	Thermal oxidation of oxynitride films as a strategy to achieve ($Sr2Ta2O7$)100-x($La2Ti2O7$)x based oxide perovskite films with x = 1.65. Journal of the European Ceramic Society, 2020, 40, 6293-6300.	5.7	3
13	Hybrid Flash-SPS of TiNiCu0.05Sn with reduced thermal conductivity. Journal of Alloys and Compounds, 2020, 837, 155058.	5.5	20
14	Radial gradient refractive index (GRIN) infrared lens based on spatially resolved crystallization of chalcogenide glass. Optical Materials Express, 2020, 10, 860.	3.0	21
15	Radial gradient refractive index from crystallized chalcogenide glass for infrared applications. , 2020,		O
16	Theoretical-experimental evaluation of the photocatalytic activity of KCa2Ta3â^'xNbxO10. Materials Letters, 2019, 253, 392-395.	2.6	6
17	Impact of Nanostructuration on the Chemical Composition of Nickel Oxide Nanoparticles. Inorganic Chemistry, 2019, 58, 15004-15007.	4.0	4
18	New insights in structural characterization of transparent ZnS ceramics hot-pressed from nanocrystalline powders synthesized by combustion method. Journal of the European Ceramic Society, 2019, 39, 3094-3102.	5.7	20

#	Article	IF	CITATIONS
19	Ferroelectricity and high tunability in novel strontium and tantalum based layered perovskite materials. Journal of the European Ceramic Society, 2018, 38, 2526-2533.	5.7	14
20	Impact of Coinage Metal Insertion on the Thermoelectric Properties of GeTe Solid-State Solutions. Journal of Physical Chemistry C, 2018, 122, 227-235.	3.1	49
21	Effect of the Processing Route on the Thermoelectric Performance of Nanostructured CuPb ₁₈ SbTe ₂₀ . Inorganic Chemistry, 2018, 57, 12976-12986.	4.0	29
22	Tb ³⁺ doped Ga ₅ Ge ₂₀ Sb ₁₀ Se _{65-x} Te _x (x = 0-375) chalcogenide glasses and fibers for MWIR and LWIR emissions. Optical Materials Express, 2018, 8, 2887.	3.0	36
23	Ferroelectric and dielectric study of strontium tantalum based perovskite oxynitride films deposited by reactive rf magnetron sputtering. Materials Research Bulletin, 2017, 96, 126-132.	5.2	12
24	Photophysical Properties of SrTaO ₂ N Thin Films and Influence of Anion Ordering: A Joint Theoretical and Experimental Investigation. Chemistry of Materials, 2017, 29, 3989-3998.	6.7	37
25	Deposition and dielectric study as function of thickness of perovskite oxynitride SrTaO 2 N thin films elaborated by reactive sputtering. Surface and Coatings Technology, 2017, 324, 607-613.	4.8	6
26	Enhancement in thermoelectric performance of n-type Pb-deficit Pb-Sb-Te alloys. Journal of Alloys and Compounds, 2017, 729, 198-202.	5.5	23
27	Experimental and Theoretical Evidences of p-Type Conductivity in Nickel Carbodiimide Nanoparticles with a Delafossite Structure Type. Inorganic Chemistry, 2017, 56, 7922-7927.	4.0	14
28	Thermoelectric Properties of Highly-Crystallized Ge-Te-Se Glasses Doped with Cu/Bi. Materials, 2017, 10, 328.	2.9	26
29	Novel color-tunable Gd2O2CN2:Tb3+, Eu3+ phosphors: Characterization and photoluminescence properties. Ceramics International, 2016, 42, 12508-12511.	4.8	14
30	Preparation of niobium based oxynitride nanosheets by exfoliation of Ruddlesden-Popper phase precursor. Solid State Sciences, 2016, 54, 17-21.	3.2	18
31	Deposition and dielectric characterization of strontium and tantalum-based oxide and oxynitride perovskite thin films. Solid State Sciences, 2016, 54, 22-29.	3.2	6
32	Transesterification of vegetable oils by AlPOxNy heterogeneous catalysts. Applied Catalysis B: Environmental, 2016, 185, 253-264.	20.2	5
33	Preparation of nitrogen doped zinc oxide nanoparticles and thin films by colloidal route and low temperature nitridation process. Solid State Sciences, 2016, 54, 30-36.	3.2	19
34	Synthesis of Ni-poor NiO nanoparticles for p-DSSC applications. Solid State Sciences, 2016, 54, 37-42.	3.2	21
35	Unravelling the origin of the giant Zn deficiency in wurtzite type ZnO nanoparticles. Scientific Reports, 2015, 5, 12914.	3.3	17
36	Combustion synthesis and up-conversion luminescence of La2O2S:Er3+,Yb3+ nanophosphors. Journal of Solid State Chemistry, 2015, 226, 255-261.	2.9	32

3

#	Article	IF	Citations
37	Luminescent properties of novel red-emitting phosphor: Gd_2O_2CN_2:Eu^3+. Optical Materials Express, 2015, 5, 2616.	3.0	8
38	Growth of (Sr,La)-(Ta,Ti)-O-N perovskite oxide and oxynitride films by radio frequency magnetron sputtering: Influence of the reactive atmosphere on the film structure. Journal of Crystal Growth, 2015, 413, 5-11.	1.5	12
39	Miniaturized notch antenna based on lanthanum titanium perovskite oxide thin films. Thin Solid Films, 2014, 563, 36-39.	1.8	3
40	Lanthanum titanium perovskite compound: Thin film deposition and high frequency dielectric characterization. Thin Solid Films, 2014, 553, 76-80.	1.8	14
41	Influence of the sputtering reactive gas on the oxide and oxynitride LaTiON deposition by RF magnetron sputtering. Applied Surface Science, 2013, 264, 533-537.	6.1	7
42	Reactive Sputtering Deposition of Perovskite Oxide and Oxynitride Lanthanum Titanium Films: Structural and Dielectric Characterization. Crystal Growth and Design, 2013, 13, 4852-4858.	3.0	33
43	Novel TaPO5â^xN2x/3 oxynitrides. Journal of Alloys and Compounds, 2012, 513, 530-538.	5.5	1
44	P-Type Nitrogen-Doped ZnO Nanoparticles Stable under Ambient Conditions. Journal of the American Chemical Society, 2012, 134, 464-470.	13.7	115
45	Titanium and vanadium oxynitride powders as pseudo-capacitive materials for electrochemical capacitors. Electrochimica Acta, 2012, 82, 257-262.	5.2	69
46	Dielectric oxynitride LaTiOxNy thin films deposited by reactive radio-frequency sputtering. Thin Solid Films, 2012, 520, 4536-4540.	1.8	7
47	Preparation and Photoluminescence Properties of Eu 2+ -Doped Oxyapatite-Type Sr x La 10â^' x (SiO 4) 6 O 3â^' x /2. Chinese Physics Letters, 2011, 28, 014209.	3.3	4
48	Characterization of Nd2AlO3N and Sm2AlO3N oxynitrides synthesized by carbothermal reduction and nitridation. Journal of Alloys and Compounds, 2011, 509, 5839-5842.	5.5	13
49	Preparation and optical characteristics of novel oxynitride phases in the R3(Ta/Nb)–O–N system (RÂ=ÂLa,) Tj	j ETQq1 1	0.784314 g
50	Study of the R–(Zr,W)–(O,N) (R=Y, Nd, Sm, Gd, Yb) oxynitride system. Materials Research Bulletin, 2010, 45, 97-102.	5.2	7
51	Photoluminescence of Eu ²⁺ â€Doped Strontium Cyanamide: A Novel Host Lattice for Eu ²⁺ . Journal of the American Ceramic Society, 2010, 93, 3052-3055.	3.8	16
52	Synthesis and characterization of tin containing molybdophosphate and tungstophosphate glasses. Journal of Non-Crystalline Solids, 2010, 356, 87-92.	3.1	18
53	Glass foams for environmental applications. Journal of Non-Crystalline Solids, 2010, 356, 2562-2568.	3.1	63
54	Tunability of the optical properties in the Y6(W,Mo)(O,N)12 system. Solid State Sciences, 2009, 11, 533-536.	3.2	23

#	Article	IF	CITATIONS
55	Synthesis, crystal and electronic structures of La3Cr2N6. Solid State Communications, 2009, 149, 273-276.	1.9	8
56	Optical properties of oxynitride powders. Journal of the Ceramic Society of Japan, 2009, 117, 1-5.	1.1	61
57	Powder preparation and UV absorption properties of selected compositions in the CeO2–Y2O3 system. Journal of Solid State Chemistry, 2008, 181, 1204-1212.	2.9	21
58	A new ternary nitride La2GaN3: Synthesis and crystal structure. Journal of Alloys and Compounds, 2008, 457, 372-375.	5 . 5	12
59	Eu^2+ and Mn^2+ codoped Ba_2Mg(BO_3)_2—new red phosphor for white LEDs. Optics Letters, 2008, 33, 2865.	3.3	49
60	Oxynitride perovskite LaTiOxNy thin films deposited by reactive sputtering. Progress in Solid State Chemistry, 2007, 35, 299-308.	7.2	35
61	Na2ZnGe. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, i62-i63.	0.2	2
62	UV absorption properties of ceria-modified compositions within the fluorite-type solid solution CeO2â€"Y6WO12. Journal of Solid State Chemistry, 2006, 179, 3184-3190.	2.9	38
63	Optical Properties of the Perovskite Solid Solution LaTiO2N–ATiO3(A = Sr, Ba). European Journal of Inorganic Chemistry, 2006, 2006, 1223-1230.	2.0	74
64	Lanthanum titanate ceramics: Electrical characterizations in large temperature and frequency ranges. Journal of the European Ceramic Society, 2005, 25, 2085-2088.	5.7	38
65	Thermochemistry of a New Class of Materials Containing Dinitrogen Pairs in an Oxide Matrix ChemInform, 2005, 36, no.	0.0	0
66	Thermochemistry of a New Class of Materials Containing Dinitrogen Pairs in an Oxide Matrix. Chemistry of Materials, 2005, 17, 3570-3574.	6.7	52
67	Thermal Ammonolysis Study of the Rare-Earth Tantalates RTaO4. Chemistry of Materials, 2005, 17, 152-156.	6.7	58
68	New scheelite-type oxynitrides in systems RWO3N–AWO4 (R = rare-earth element; A = Ca, Sr) from precursors obtained by the citrate route. Materials Research Bulletin, 2004, 39, 1091-1101.	5.2	20
69	Formation of Molybdenum Nitrides by Ammonia Nitridation of Mo Powder and Sheet. Defect and Diffusion Forum, 2001, 194-199, 1607-1612.	0.4	3