Nicola Amodio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/507913/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Non-Coding RNA Journal Club: Highlights on Recent Papers—10. Non-coding RNA, 2022, 8, 3.	1.3	Ο
2	Mitochondrial Determinants of Anti-Cancer Drug-Induced Cardiotoxicity. Biomedicines, 2022, 10, 520.	1.4	14
3	miR-21 antagonism abrogates Th17 tumor promoting functions in multiple myeloma. Leukemia, 2021, 35, 823-834.	3.3	33
4	The chromogranin A 1â€373 fragment reveals how a single change in the protein sequence exerts strong cardioregulatory effects by engaging neuropilinâ€1. Acta Physiologica, 2021, 231, e13570.	1.8	14
5	In Vitro Silencing of IncRNAs Using LNA GapmeRs. Methods in Molecular Biology, 2021, 2348, 157-166.	0.4	5
6	Epigenetic Regulation of Mitochondrial Quality Control Genes in Multiple Myeloma: A Sequenom MassARRAY Pilot Investigation on HMCLs. Journal of Clinical Medicine, 2021, 10, 1295.	1.0	5
7	The Landscape of Signaling Pathways and Proteasome Inhibitors Combinations in Multiple Myeloma. Cancers, 2021, 13, 1235.	1.7	16
8	Genomic Instability in Multiple Myeloma: A "Non-Coding RNA―Perspective. Cancers, 2021, 13, 2127.	1.7	8
9	Cateslytin abrogates lipopolysaccharide-induced cardiomyocyte injury by reducing inflammation and oxidative stress through toll like receptor 4 interaction. International Immunopharmacology, 2021, 94, 107487.	1.7	16
10	Exploring miRNA Signature and Other Potential Biomarkers for Oligometastatic Prostate Cancer Characterization: The Biological Challenge behind Clinical Practice. A Narrative Review. Cancers, 2021, 13, 3278.	1.7	6
11	Recent Advances on the Pathobiology and Treatment of Multiple Myeloma. Cancers, 2021, 13, 3112.	1.7	Ο
12	CRISPR Interference (CRISPRi) and CRISPR Activation (CRISPRa) to Explore the Oncogenic IncRNA Network. Methods in Molecular Biology, 2021, 2348, 189-204.	0.4	12
13	ZNF521 Enhances MLL-AF9-Dependent Hematopoietic Stem Cell Transformation in Acute Myeloid Leukemias by Altering the Gene Expression Landscape. International Journal of Molecular Sciences, 2021, 22, 10814.	1.8	8
14	Current Status and Future Perspectives on Therapeutic Potential of Apigenin: Focus on Metabolic-Syndrome-Dependent Organ Dysfunction. Antioxidants, 2021, 10, 1643.	2.2	15
15	Oleil Hydroxytyrosol (HTOL) Exerts Anti-Myeloma Activity by Antagonizing Key Survival Pathways in Malignant Plasma Cells. International Journal of Molecular Sciences, 2021, 22, 11639.	1.8	4
16	Dissecting the Biological Relevance and Clinical Impact of IncRNA MIAT in Multiple Myeloma. Cancers, 2021, 13, 5518.	1.7	0
17	Long non-coding RNA NEAT1 targeting impairs the DNA repair machinery and triggers anti-tumor activity in multiple myeloma. Leukemia, 2020, 34, 234-244.	3.3	80
18	Effects of Histone Deacetylase Inhibitors on the Development of Epilepsy and Psychiatric Comorbidity in WAG/Rij Rats. Molecular Neurobiology, 2020, 57, 408-421.	1.9	53

NICOLA AMODIO

#	Article	IF	CITATIONS
19	IL-6 Receptor Blockade by Tocilizumab Has Anti-absence and Anti-epileptogenic Effects in the WAG/Rij Rat Model of Absence Epilepsy. Neurotherapeutics, 2020, 17, 2004-2014.	2.1	24
20	Multiple Myeloma-Derived Extracellular Vesicles Induce Osteoclastogenesis through the Activation of the XBP1/IRE11± Axis. Cancers, 2020, 12, 2167.	1.7	27
21	Emerging Insights on the Biological Impact of Extracellular Vesicle-Associated ncRNAs in Multiple Myeloma. Non-coding RNA, 2020, 6, 30.	1.3	7
22	Non-Coding RNAs in Multiple Myeloma Bone Disease Pathophysiology. Non-coding RNA, 2020, 6, 37.	1.3	10
23	Non-Coding RNAs: Strategy for Viruses' Offensive. Non-coding RNA, 2020, 6, 38.	1.3	5
24	Jagged Ligands Enhance the Pro-Angiogenic Activity of Multiple Myeloma Cells. Cancers, 2020, 12, 2600.	1.7	7
25	LncRNA NEAT1 in Paraspeckles: A Structural Scaffold for Cellular DNA Damage Response Systems?. Non-coding RNA, 2020, 6, 26.	1.3	27
26	Exploiting MYC-induced PARPness to target genomic instability in multiple myeloma. Haematologica, 2020, 106, 185-195.	1.7	33
27	The Non-Coding RNA Landscape of Plasma Cell Dyscrasias. Cancers, 2020, 12, 320.	1.7	24
28	Expression Pattern and Biological Significance of the IncRNA ST3GAL6-AS1 in Multiple Myeloma. Cancers, 2020, 12, 782.	1.7	6
29	Harnessing the Immune System Against Multiple Myeloma: Challenges and Opportunities. Frontiers in Oncology, 2020, 10, 606368.	1.3	23
30	Impact of Natural Dietary Agents on Multiple Myeloma Prevention and Treatment: Molecular Insights and Potential for Clinical Translation. Current Medicinal Chemistry, 2020, 27, 187-215.	1.2	14
31	miR-22 suppresses DNA ligase III addiction in multiple myeloma. Leukemia, 2019, 33, 487-498.	3.3	39
32	Anti-tumor Activity and Epigenetic Impact of the Polyphenol Oleacein in Multiple Myeloma. Cancers, 2019, 11, 990.	1.7	47
33	Trabectedin triggers direct and NK-mediated cytotoxicity in multiple myeloma. Journal of Hematology and Oncology, 2019, 12, 32.	6.9	28
34	Replacement of miR-155 Elicits Tumor Suppressive Activity and Antagonizes Bortezomib Resistance in Multiple Myeloma. Cancers, 2019, 11, 236.	1.7	35
35	Long non-coding RNA NEAT1 shows high expression unrelated to molecular features and clinical outcome in multiple myeloma. Haematologica, 2019, 104, e72-e76.	1.7	27
36	Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia, 2018, 32, 1948-1957.	3.3	179

NICOLA AMODIO

#	Article	IF	CITATIONS
37	ZNF423: A New Player in Estrogen Receptor-Positive Breast Cancer. Frontiers in Endocrinology, 2018, 9, 255.	1.5	17
38	Therapeutic vulnerability of multiple myeloma to MIR17PTi, a first-in-class inhibitor of pri-miR-17-92. Blood, 2018, 132, 1050-1063.	0.6	52
39	MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches. Journal of Hematology and Oncology, 2018, 11, 63.	6.9	268
40	Turning Stem Cells Bad: Generation of Clinically Relevant Models of Human Acute Myeloid Leukemia through Gene Delivery- or Genome Editing-Based Approaches. Molecules, 2018, 23, 2060.	1.7	6
41	Functional role and therapeutic targeting of p21-activated kinase 4 in multiple myeloma. Blood, 2017, 129, 2233-2245.	0.6	33
42	Epigenetic modifications in multiple myeloma: recent advances on the role of DNA and histone methylation. Expert Opinion on Therapeutic Targets, 2017, 21, 91-101.	1.5	54
43	Fingolimod Exerts only Temporary Antiepileptogenic Effects but Longer-Lasting Positive Effects on Behavior in the WAG/Rij Rat Absence Epilepsy Model. Neurotherapeutics, 2017, 14, 1134-1147.	2.1	32
44	Evidence of novel miR-34a-based therapeutic approaches for multiple myeloma treatment. Scientific Reports, 2017, 7, 17949.	1.6	36
45	Circulating biomarkers in osteosarcoma: new translational tools for diagnosis and treatment. Oncotarget, 2017, 8, 100831-100851.	0.8	40
46	Inhibition of EZH2 triggers the tumor suppressive miR-29b network in multiple myeloma. Oncotarget, 2017, 8, 106527-106537.	0.8	60
47	Biological Insights into Myeloma and Other B Cell Malignancies. BioMed Research International, 2016, 2016, 1-3.	0.9	3
48	Disentangling the microRNA regulatory <i>milieu</i> in multiple myeloma: integrative genomics analysis outlines mixed miRNA-TF circuits and pathway-derived networks modulated in t(4;14) patients. Oncotarget, 2016, 7, 2367-2378.	0.8	41
49	MicroRNAs: Novel Crossroads between Myeloma Cells and the Bone Marrow Microenvironment. BioMed Research International, 2016, 2016, 1-12.	0.9	49
50	Therapeutic Targeting of miR-29b/HDAC4 Epigenetic Loop in Multiple Myeloma. Molecular Cancer Therapeutics, 2016, 15, 1364-1375.	1.9	94
51	Therapeutic Targeting of miR-29b/HDAC4 Epigenetic Loop in Multiple Myeloma. Molecular Cancer Therapeutics, 2016, 15, 1364-1375.	1.9	60
52	A 13 mer LNA-i-miR-221 Inhibitor Restores Drug Sensitivity in Melphalan-Refractory Multiple Myeloma Cells. Clinical Cancer Research, 2016, 22, 1222-1233.	3.2	96
53	Inhibition of miR-21 restores RANKL/OPG ratio in multiple myeloma-derived bone marrow stromal cells and impairs the resorbing activity of mature osteoclasts. Oncotarget, 2015, 6, 27343-27358.	0.8	89
54	miR-29s: a family of epi-miRNAs with therapeutic implications in hematologic malignancies. Oncotarget, 2015, 6, 12837-12861.	0.8	112

NICOLA AMODIO

#	Article	IF	CITATIONS
55	Sphingosine analog fingolimod (FTY720) increases radiation sensitivity of human breast cancer cells in vitro. Cancer Biology and Therapy, 2014, 15, 797-805.	1.5	40
56	A p53â€Dependent Tumor Suppressor Network Is Induced by Selective miRâ€125aâ€5p Inhibition in Multiple Myeloma Cells. Journal of Cellular Physiology, 2014, 229, 2106-2116.	2.0	86
57	In Vitro and In Vivo Activity of a Novel Locked Nucleic Acid (LNA)-Inhibitor-miR-221 against Multiple Myeloma Cells. PLoS ONE, 2014, 9, e89659.	1.1	77
58	MYD88-independent growth and survival effects of Sp1 transactivation in Waldenström macroglobulinemia. Blood, 2014, 123, 2673-2681.	0.6	16
59	MicroRNA and Multiple Myeloma: from Laboratory Findings to Translational Therapeutic Approaches. Current Pharmaceutical Biotechnology, 2014, 15, 459-467.	0.9	46
60	Non-coding RNA: a novel opportunity for the personalized treatment of multiple myeloma. Expert Opinion on Biological Therapy, 2013, 13, S125-S137.	1.4	70
61	miR-29b induces SOCS-1 expression by promoter demethylation and negatively regulates migration of multiple myeloma and endothelial cells. Cell Cycle, 2013, 12, 3650-3662.	1.3	96
62	In Vitro and in Vivo Anti-tumor Activity of miR-221/222 Inhibitors in Multiple Myeloma. Oncotarget, 2013, 4, 242-255.	0.8	125
63	From Target Therapy to miRNA Therapeutics of Human Multiple Myeloma: Theoretical and Technological Issues in the Evolving Scenario. Current Drug Targets, 2013, 14, 1144-1149.	1.0	45
64	DNA-demethylating and anti-tumor activity of synthetic miR-29b mimics in multiple myeloma. Oncotarget, 2012, 3, 1246-1258.	0.8	138
65	Early hematopoietic zinc finger protein—zinc finger protein 521: A candidate regulator of diverse immature cells. International Journal of Biochemistry and Cell Biology, 2008, 40, 848-854.	1.2	55