Hartmut H Malluche

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5079055/publications.pdf

Version: 2024-02-01

81 papers 12,907 citations

66250 44 h-index 82 g-index

83 all docs 83 docs citations

83 times ranked 10522 citing authors

#	Article	IF	CITATIONS
1	Low Turnover Renal Osteodystrophy With Abnormal Bone Quality and Vascular Calcification in Patients With Mild-to-Moderate CKD. Kidney International Reports, 2022, 7, 1016-1026.	0.4	8
2	Response to "Low turnover bone disease in early CKD stages― Kidney International Reports, 2022, , .	0.4	0
3	The Role of Alterations in Alpha-Klotho and FGF-23 in Kidney Transplantation and Kidney Donation. Frontiers in Medicine, 2022, 9, .	1.2	6
4	Bone Quality and Fractures in Women With Osteoporosis Treated With Bisphosphonates for 1 to 14 Years. JBMR Plus, 2021, 5, e10549.	1.3	5
5	Importance of bone turnover for therapeutic decisions in patients with CKD-MBD. Kidney International, 2021, 100, 502-505.	2.6	10
6	Biomarkers of Bone Turnover Identify Subsets of Chronic Kidney Disease Patients at Higher Risk for Fracture. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e2903-e2911.	1.8	13
7	Longâ€ŧerm outcomes and management considerations after parathyroidectomy in the dialysis patient. Seminars in Dialysis, 2019, 32, 541-552.	0.7	13
8	Serum bone markers in ROD patients across the spectrum of decreases in GFR: Activin A increases before all other markers. Clinical Nephrology, 2019, 91, 222-230.	0.4	24
9	Sotatercept Safety and Effects onÂHemoglobin, Bone, and Vascular Calcification. Kidney International Reports, 2019, 4, 1585-1597.	0.4	21
10	A Survey Study of Self-Rated Patients' Knowledge About AKI in a Post-Discharge AKI Clinic. Canadian Journal of Kidney Health and Disease, 2019, 6, 205435811983070.	0.6	19
11	Two-year cortical and trabecular bone loss in CKD-5D: biochemical and clinical predictors. Osteoporosis International, 2018, 29, 125-134.	1.3	27
12	The activin receptor is stimulated in the skeleton, vasculature, heart, and kidney during chronic kidney disease. Kidney International, 2018, 93, 147-158.	2.6	51
13	Ligand trap of the activin receptor type IIA inhibits osteoclast stimulation of bone remodeling in diabetic mice with chronic kidney disease. Kidney International, 2017, 91, 86-95.	2.6	45
14	Higher mineralized bone volume is associated with a lower plain X-Ray vascular calcification score in hemodialysis patients. PLoS ONE, 2017, 12, e0179868.	1.1	11
15	Only minor differences in renal osteodystrophy features between wild-type and sclerostin knockout mice with chronic kidney disease. Kidney International, 2016, 90, 828-834.	2.6	18
16	Reduction of Dialysate Calcium Level Reduces Progression of Coronary Artery Calcification and Improves Low Bone Turnover in Patients on Hemodialysis. Journal of the American Society of Nephrology: JASN, 2016, 27, 2475-2486.	3.0	65
17	Diagnostic Accuracy of Bone Turnover Markers and Bone Histology in Patients With CKD Treated by Dialysis. American Journal of Kidney Diseases, 2016, 67, 559-566.	2.1	218
18	Diagnosis of low bone mass in CKD-5D patients. Clinical Nephrology, 2016, 85 (2016), 77-83.	0.4	13

#	Article	IF	CITATIONS
19	Coronary artery calcification in CKD-5D †patients is tied to adverse cardiac function †and increased mortality. Clinical Nephrology, 2016, 86, 291-302.	0.4	12
20	Effects of Sucroferric Oxyhydroxide Compared to Lanthanum Carbonate and Sevelamer Carbonate on Phosphate Homeostasis and Vascular Calcifications in a Rat Model of Chronic Kidney Failure. BioMed Research International, 2015, 2015, 1-9.	0.9	27
21	SIRT6 deficiency culminates in low-turnover osteopenia. Bone, 2015, 81, 168-177.	1.4	31
22	Bone Alkaline Phosphatase Isoforms in Hemodialysis Patients With Low Versus Non-Low Bone Turnover: AÂDiagnostic TestÂStudy. American Journal of Kidney Diseases, 2015, 66, 99-105.	2.1	29
23	High Parathyroid Hormone Level and Osteoporosis Predict Progression of Coronary Artery Calcification in Patients on Dialysis. Journal of the American Society of Nephrology: JASN, 2015, 26, 2534-2544.	3.0	74
24	Bone Mineral Density and Serum Biochemical Predictors of Bone Loss in Patients with CKD on Dialysis. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 1254-1262.	2.2	111
25	Early chronic kidney disease–mineral bone disorder stimulates vascular calcification. Kidney International, 2014, 85, 142-150.	2.6	178
26	CKD-Induced Wingless/Integration 1 Inhibitors and Phosphorus Cause the CKD–Mineral and Bone Disorder. Journal of the American Society of Nephrology: JASN, 2014, 25, 1760-1773.	3.0	144
27	FGF-23 serum levels and bone histomorphometric results in adult patients with chronic kidney disease on dialysis. Clinical Nephrology, 2014, 82 (2014), 287-295.	0.4	28
28	Standardized nomenclature, symbols, and units for bone histomorphometry: A 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. Journal of Bone and Mineral Research, 2013, 28, 2-17.	3.1	2,023
29	Evaluating bone quality in patients with chronic kidney disease. Nature Reviews Nephrology, 2013, 9, 671-680.	4.1	67
30	Low-Energy Fractures without Low T-Scores Characteristic of Osteoporosis. Journal of Bone and Joint Surgery - Series A, 2013, 95, e139.	1.4	38
31	Differences in Bone Quality in Low- and High-Turnover Renal Osteodystrophy. Journal of the American Society of Nephrology: JASN, 2012, 23, 525-532.	3.0	116
32	The link between bone and coronary calcifications in CKD-5 patients on haemodialysis. Nephrology Dialysis Transplantation, 2011, 26, 1010-1015.	0.4	65
33	Renal osteodystrophy in the first decade of the new millennium: Analysis of 630 bone biopsies in black and white patients. Journal of Bone and Mineral Research, 2011, 26, 1368-1376.	3.1	265
34	Sclerostin and Dickkopf-1 in Renal Osteodystrophy. Clinical Journal of the American Society of Nephrology: CJASN, 2011, 6, 877-882.	2.2	210
35	Intact PTH Combined With the PTH Ratio for Diagnosis of Bone Turnover in Dialysis Patients: A Diagnostic Test Study. American Journal of Kidney Diseases, 2010, 55, 897-906.	2.1	38
36	Bone disease after renal transplantation. Nature Reviews Nephrology, 2010, 6, 32-40.	4.1	82

#	Article	IF	CITATIONS
37	Relationship between Bone Histology and Markers of Bone and Mineral Metabolism in African-American Hemodialysis Patients. Clinical Journal of the American Society of Nephrology: CJASN, 2009, 4, 1484-1493.	2.2	40
38	Low Bone Volumeâ€"A Risk Factor for Coronary Calcifications in Hemodialysis Patients. Clinical Journal of the American Society of Nephrology: CJASN, 2009, 4, 450-455.	2.2	95
39	Bone Markers Predict Cardiovascular Events in Chronic Kidney Disease. Journal of Bone and Mineral Research, 2008, 23, 1850-1858.	3.1	83
40	Effects of Sevelamer Hydrochloride and Calcium Carbonate on Renal Osteodystrophy in Hemodialysis Patients. Journal of the American Society of Nephrology: JASN, 2008, 19, 405-412.	3.0	153
41	Effects of Treatment of Renal Osteodystrophy on Bone Histology. Clinical Journal of the American Society of Nephrology: CJASN, 2008, 3, S157-S163.	2.2	41
42	Bone biopsy in patients with osteoporosis. Current Osteoporosis Reports, 2007, 5, 146-152.	1.5	18
43	The importance of bone health in end-stage renal disease: out of the frying pan, into the fire?. Nephrology Dialysis Transplantation, 2004, 19, i9-i13.	0.4	74
44	Differences in bone turnover and intact PTH levels between African American and Caucasian patients with end-stage renal disease. Kidney International, 2003, 64, 737-742.	2.6	58
45	Prevention of Bone Loss in Renal Transplant Recipients: A Prospective, Randomized Trial of Intravenous Pamidronate. Journal of the American Society of Nephrology: JASN, 2003, 14, 2669-2676.	3.0	234
46	Administration of PTH-(7-84) Antagonizes the Effects of PTH-(1-84) on Bone in Rats with Moderate Renal Failure. Endocrinology, 2003, 144, 1135-1138.	1.4	96
47	Aluminium and bone disease in chronic renal failure. Nephrology Dialysis Transplantation, 2002, 17, 21-24.	0.4	118
48	Management of hyperphosphataemia of chronic kidney disease: lessons from the past and future directions. Nephrology Dialysis Transplantation, 2002, 17, 1170-1175.	0.4	44
49	Use and indication of vitamin D and vitamin D analogues in patients with renal bone disease. Nephrology Dialysis Transplantation, 2002, 17, 6-9.	0.4	16
50	Update on vitamin D and its newer analogues: Actions and rationale for treatment in chronic renal failure. Kidney International, 2002, 62, 367-374.	2.6	56
51	Improved assessment of bone turnover by the PTH-(1-84)/large C-PTH fragments ratio in ESRD patients. Kidney International, 2001, 60, 1460-1468.	2.6	226
52	Parathyroid Hormone/Parathyroid Hormone-Related Peptide Type 1 Receptor in Human Bone. Journal of Bone and Mineral Research, 2001, 16, 448-456.	3.1	55
53	High Prevalence of Low Bone Turnover and Occurrence of Osteomalacia after Kidney Transplantation. Journal of the American Society of Nephrology: JASN, 2000, 11, 1093-1099.	3.0	211
54	22-Oxacalcitriol suppresses secondary hyperparathyroidism without inducing low bone turnover in dogs with renal failure. Kidney International, 1999, 55, 821-832.	2.6	52

#	Article	IF	CITATIONS
55	Intermittent and Continuous Administration of the Bisphosphonate Ibandronate in Ovariohysterectomized Beagle Dogs: Effects on Bone Morphometry and Mineral Properties. Journal of Bone and Mineral Research, 1999, 14, 1768-1778.	3.1	87
56	Calcitonin Alters Bone Quality in Beagle Dogs. Journal of Bone and Mineral Research, 1997, 12, 1936-1943.	3.1	60
57	Bone resorption and mRNA expression of IL-6 and IL-6 receptor in patients with renal osteodystrophy. Kidney International, 1996, 50, 515-520.	2.6	57
58	Calcitonin prevents bone loss but decreases osteoblastic activity in ovariohysterectomized beagle dogs. Journal of Bone and Mineral Research, 1996, 11, 446-455.	3.1	25
59	PREVENTION OF CANCELLOUS BONE LOSS BUT PERSISTENCE OF RENAL BONE DISEASE DESPITE NORMAL 1,25 VITAMIN D LEVELS TWO YEARS AFTER KIDNEY TRANSPLANTATION. Transplantation, 1995, 59, 1393-1400.	0.5	65
60	Predictive value of serum parathyroid hormone levels for bone turnover in patients on chronic maintenance dialysis. American Journal of Kidney Diseases, 1995, 26, 622-631.	2.1	241
61	Evidence for abnormal calcium homeostasis in patients with adynamic bone disease. Kidney International, 1994, 46, 855-861.	2.6	296
62	Calcitriol pulse therapy in patients with end-stage renal failure. Current Opinion in Nephrology and Hypertension, 1994, 3, 615-619.	1.0	14
63	Structural and cellular assessment of bone quality of proximal femur. Bone, 1993, 14, 231-242.	1.4	704
64	Renal Osteodystrophy Is a Multifaceted Disease with No Uniform Therapy. Seminars in Dialysis, 1993, 6, 210-214.	0.7	3
65	Isolation and complete amino acid sequence of osteocalcin from canine bone. Journal of Bone and Mineral Research, 1993, 8, 733-743.	3.1	21
66	A new bisphosphonate, BM 21.0955, prevents bone loss associated with cessation of ovarian function in experimental dogs. Journal of Bone and Mineral Research, 1993, 8, 1345-1355.	3.1	53
67	Bone changes occurring early after cessation of ovarian function in beagle dogs: A histomorphometric study employing sequential biopsies. Journal of Bone and Mineral Research, 1990, 5, 263-272.	3.1	72
68	Regulation of 25-hydroxyvitamin D3 metabolism in cultures of osteoblastic cells. Journal of Bone and Mineral Research, 1990, 5, 815-823.	3.1	8
69	1,25(OH)2D3 administration in moderate renal failure: A prospective double-blind trial. Kidney International, 1989, 35, 661-669.	2.6	156
70	Aluminum-Related Bone Disease. Blood Purification, 1988, 6, 1-15.	0.9	30
71	Bone histomorphometry: Standardization of nomenclature, symbols, and units: Report of the asbmr histomorphometry nomenclature committee. Journal of Bone and Mineral Research, 1987, 2, 595-610.	3.1	4,558
72	Osteoblastic Insufficiency Is Responsible for Maintenance of Osteopenia after Loss of Ovarian Function in Experimental Beagle Dogs*. Endocrinology, 1986, 119, 2649-2654.	1.4	91

#	Article	IF	CITATIONS
73	Aluminum-Related Bone Disease in Mild and Advanced Renal Failure: Evidence for High Prevalence and Morbidity and Studies on Etiology and Diagnosis. American Journal of Nephrology, 1986, 6, 275-283.	1.4	87
74	1,25-Dihydroxyvitamin D Maintains Bone Cell Activity, and Parathyroid Hormone Modulates Bone Cell Number in Dogs [*] . Endocrinology, 1986, 119, 1298-1304.	1.4	57
75	Aluminum: Toxin or Innocent Bystander in Renal Osteodystrophy. American Journal of Kidney Diseases, 1985, 6, 336-341.	2.1	15
76	A new semiautomatic method for quantitative static and dynamic bone histology. Calcified Tissue International, 1982, 34, 439-448.	1.5	142
77	Quantitative bone histology in 84 normal American subjects. Calcified Tissue International, 1982, 34, 449-455.	1.5	129
78	A program package for quantitative analysis of histologic structure and remodeling dynamics of bone. Computer Programs in Biomedicine, 1981, 13, 191-201.	0.8	43
79	Effects of 6 Months Therapy with 1,25 (OH)2D3 on Bone Disease of Dialysis Patients. Contributions To Nephrology, 1980, 18, 98-104.	1.1	15
80	Long-Term Effects of 1,25(OH)2 D3 on Clinical and Biochemical Derangements of Divalent Ions in Dialysis Patients. Contributions To Nephrology, 1980, 18, 42-54.	1.1	14
81	Osteomalacia and Hyperparathyroid Bone Disease in Patients with Nephrotic Syndrome. Journal of Clinical Investigation, 1979, 63, 494-500.	3.9	85