
Yingwang Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5078993/publications.pdf Version: 2024-02-01

YINCWANC YE

#	Article	IF	CITATIONS
1	Food Safety Risks and Contributing Factors of Cronobacter spp Engineering, 2022, 12, 128-138.	6.7	13
2	Liposome-encapsulated aggregation-induced emission fluorogen assisted with portable smartphone for dynamically on-site imaging of residual tetracycline. Sensors and Actuators B: Chemical, 2022, 350, 130871.	7.8	51
3	Fe-Doped polydopamine nanoparticles with peroxidase-mimicking activity for the detection of hypoxanthine related to meat freshness. Analyst, The, 2022, 147, 956-964.	3.5	20
4	Ratiometric fluorescence detection of pathogenic bacteria based on dual-recognition nanoprobes with controllable G-quadruplex release. Chemical Communications, 2022, 58, 447-450.	4.1	17
5	Engineering of Portable Smartphone Integrated with Liposomeâ€Encapsulated Curcumin for Onsite Visual Ratiometric Fluorescence Imaging of Hypochlorite. Chemistry - A European Journal, 2022, 28, .	3.3	8
6	Engineering efficient artificial nanozyme based on chitosan grafted Fe-doped-carbon dots for bacteria biofilm eradication. Journal of Hazardous Materials, 2022, 435, 128996.	12.4	57
7	Engineering of 2D artificial nanozyme-based blocking effect-triggered colorimetric sensor for onsite visual assay of residual tetracycline in milk. Mikrochimica Acta, 2022, 189, .	5.0	13
8	Polydopamine-based nanozyme with dual-recognition strategy-driven fluorescence-colorimetric dual-mode platform for Listeria monocytogenes detection. Journal of Hazardous Materials, 2022, 439, 129582.	12.4	44
9	Evaluating the potential risk by probing the site-selective binding of rutin-Pr(III) complex to human serum albumin. Food and Chemical Toxicology, 2021, 148, 111927.	3.6	12
10	Role of fliC on biofilm formation, adhesion, and cell motility in Cronobacter malonaticus and regulation of luxS. Food and Chemical Toxicology, 2021, 149, 111940.	3.6	15
11	Chlorogenic acid induces ROS-dependent apoptosis in Fusarium fujikuroi and decreases the postharvest rot of cherry tomato. World Journal of Microbiology and Biotechnology, 2021, 37, 93.	3.6	12
12	Role of the multiple efflux pump protein TolC on growth, morphology, and biofilm formation under nitric oxide stress in Cronobacter malonaticus. JDS Communications, 2021, 2, 98-103.	1.5	4
13	Recent advances in nanotechnology for simultaneous detection of multiple pathogenic bacteria. Nano Today, 2021, 38, 101121.	11.9	80
14	Proteomics analysis mediated by quorum sensing luxS involved in oxidative stress in Cronobacter malonaticus. LWT - Food Science and Technology, 2021, 147, 111576.	5.2	4
15	Rapid and easy quantitative identification of Cronobacter spp. in infant formula milk powder by isothermal strand-exchange-amplification based molecular capturing lateral flow strip. Food Control, 2021, 126, 108048.	5.5	7
16	Effects of tolC on tolerance to bile salts and biofilm formation in Cronobacter malonaticus. Journal of Dairy Science, 2021, 104, 9521-9531.	3.4	5
17	Evaluation the binding of chelerythrine, a potentially harmful toxin, with bovine serum albumin. Food and Chemical Toxicology, 2020, 135, 110933.	3.6	19
18	Profiling the interaction of Al(III)-GFLX complex, a potential pollution risk, with bovine serum albumin. Food and Chemical Toxicology, 2020, 136, 111058.	3.6	18

YINGWANG YE

#	Article	IF	CITATIONS
19	Cronobacter spp. isolated from aquatic products in China: Incidence, antibiotic resistance, molecular characteristic and CRISPR diversity. International Journal of Food Microbiology, 2020, 335, 108857.	4.7	19
20	Size-Dependent Modulation of Polydopamine Nanospheres on Smart Nanoprobes for Detection of Pathogenic Bacteria at Single-Cell Level and Imaging-Guided Photothermal Bactericidal Activity. ACS Applied Materials & Interfaces, 2020, 12, 35626-35637.	8.0	42
21	Engineering of a Dual-Recognition Ratiometric Fluorescent Nanosensor with a Remarkably Large Stokes Shift for Accurate Tracking of Pathogenic Bacteria at the Single-Cell Level. Analytical Chemistry, 2020, 92, 13396-13404.	6.5	74
22	Portable Smartphone-Based QDs for the Visual Onsite Monitoring of Fluoroquinolone Antibiotics in Actual Food and Environmental Samples. ACS Applied Materials & Interfaces, 2020, 12, 14552-14562.	8.0	115
23	Exploration of the binding between ellagic acid, a potentially risky food additive, and bovine serum albumin. Food and Chemical Toxicology, 2019, 134, 110867.	3.6	34
24	Engineering of ATP-Powered Photosensitizer for Targeted Recycling Activatable Imaging of MicroRNA and Controllable Cascade Amplification Photodynamic Therapy. Analytical Chemistry, 2019, 91, 7879-7886.	6.5	26
25	Random Mutagenesis Applied to Reveal Factors Involved in Oxidative Tolerance and Biofilm Formation in Foodborne Cronobacter malonaticus. Frontiers in Microbiology, 2019, 10, 877.	3.5	4
26	Short communication: Roles of outer membrane protein W on survival, cellular morphology, and biofilm formation of Cronobacter sakazakii in response to oxidative stress. Journal of Dairy Science, 2019, 102, 2017-2021.	3.4	14
27	Exploration of factors in response to low acid tolerance using random mutagenesis in Cronobacter malonaticus. Food Research International, 2019, 116, 994-999.	6.2	5
28	Genes involved in tolerance to osmotic stress by random mutagenesis in Cronobacter malonaticus. Journal of Dairy Science, 2018, 101, 3851-3858.	3.4	12
29	Roles of outer membrane protein W (OmpW) on survival, morphology, and biofilm formation under NaCl stresses in Cronobacter sakazakii. Journal of Dairy Science, 2018, 101, 3844-3850.	3.4	30
30	Short communication: Roles of outer membrane protein W (OmpW) on survival and biofilm formation of Cronobacter sakazakii under neomycin sulfate stress. Journal of Dairy Science, 2018, 101, 2927-2931.	3.4	7
31	Reconstituting the History of Cronobacter Evolution Driven by Differentiated CRISPR Activity. Applied and Environmental Microbiology, 2018, 84, .	3.1	20
32	Inactivation of Cronobacter malonaticus cells and inhibition of its biofilm formation exposed to hydrogen peroxide stress. Journal of Dairy Science, 2018, 101, 66-74.	3.4	8
33	The Clutaredoxin Gene, grxB, Affects Acid Tolerance, Surface Hydrophobicity, Auto-Aggregation, and Biofilm Formation in Cronobacter sakazakii. Frontiers in Microbiology, 2018, 9, 133.	3.5	36
34	Prevalence and Molecular and Antimicrobial Characteristics of Cronobacter spp. Isolated From Raw Vegetables in China. Frontiers in Microbiology, 2018, 9, 1149.	3.5	49
35	Inhibitory effects of chitosan on Cronobacter malonaticus cells and biofilm formation. LWT - Food Science and Technology, 2018, 97, 302-307.	5.2	4
36	Short communication: Effects of vacuum freeze-drying on inactivation of Cronobacter sakazakii ATCC29544 in liquid media with different initial inoculum levels. Journal of Dairy Science, 2017, 100, 1674-1678.	3.4	4

YINGWANG YE

#	Article	IF	CITATIONS
37	Rolling circle amplification based amperometric aptamer/immuno hybrid biosensor for ultrasensitive detection of Vibrio parahaemolyticus. Mikrochimica Acta, 2017, 184, 3477-3485.	5.0	60
38	<i>In Vitro</i> Isothermal Nucleic Acid Amplification Assisted Surface-Enhanced Raman Spectroscopic for Ultrasensitive Detection of <i>Vibrio parahaemolyticus</i> . Analytical Chemistry, 2017, 89, 9775-9780.	6.5	49
39	Potential factors involved in virulence of Cronobacter sakazakii isolates by comparative transcriptome analysis. Journal of Dairy Science, 2017, 100, 8826-8837.	3.4	13
40	Electrochemical gene sensor based on a glassy carbon electrode modified with hemin-functionalized reduced graphene oxide and gold nanoparticle-immobilized probe DNA. Mikrochimica Acta, 2017, 184, 245-252.	5.0	38
41	Aptamer-Based Technologies in Foodborne Pathogen Detection. Frontiers in Microbiology, 2016, 7, 1426.	3.5	68
42	Colorimetric Integrated PCR Protocol for Rapid Detection of Vibrio parahaemolyticus. Sensors, 2016, 16, 1600.	3.8	25
43	Gold nanoparticles based lateral flow immunoassay with largely amplified sensitivity for rapid melamine screening. Mikrochimica Acta, 2016, 183, 1989-1994.	5.0	54
44	Amperometric Determination of Sulfide by Glassy Carbon Electrode Modified with Hemin Functionalized Reduced Graphene Oxide. Electroanalysis, 2016, 28, 140-144.	2.9	12
45	Short communication: Effects of high-pressure processing on the inactivity of Cronobacter sakazakii in whole milk and skim milk samples. Journal of Dairy Science, 2016, 99, 7881-7885.	3.4	6
46	Prevalence and genetic characterization of Pseudomonas aeruginosa in drinking water in Guangdong Province of China. LWT - Food Science and Technology, 2016, 69, 24-31.	5.2	13
47	Hetero-enzyme-based two-round signal amplification strategy for trace detection of aflatoxin B1 using an electrochemical aptasensor. Biosensors and Bioelectronics, 2016, 80, 574-581.	10.1	99
48	Proteins involved in responses to biofilm and planktonic modes in Cronobacter sakazakii. LWT - Food Science and Technology, 2016, 65, 1093-1099.	5.2	26
49	Identification of potential virulence factors of Cronobacter sakazakii isolates by comparative proteomic analysis. International Journal of Food Microbiology, 2016, 217, 182-188.	4.7	31
50	Detection of C ronobacter on glu B Gene and Differentiation of Four C ronobacter Species by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism Typing. Journal of Food Safety, 2015, 35, 422-427.	2.3	3
51	The Membrane Proteins Involved in Virulence of Cronobacter sakazakii Virulent G362 and Attenuated L3101 Isolates. Frontiers in Microbiology, 2015, 6, 1238.	3.5	33
52	Inhibitory effects of d-tryptophan on biofilm development by the foodborne Cronobacter sakazakii. International Dairy Journal, 2015, 49, 125-129.	3.0	24
53	Effects of culture conditions on the biofilm formation of Cronobacter sakazakii strains and distribution of genes involved in biofilm formation. LWT - Food Science and Technology, 2015, 62, 1-6.	5.2	42
54	Enzyme-based sensing of glucose using a glassy carbon electrode modified with a one-pot synthesized nanocomposite consisting of chitosan, reduced graphene oxide and gold nanoparticles. Mikrochimica Acta, 2015, 182, 1783-1789.	5.0	17

YINGWANG YE

#	Article	IF	CITATIONS
55	Effects of Ca ²⁺ and Mg ²⁺ on the Biofilm Formation of <i>Cronobacter Sakazakii</i> Strains from Powdered Infant Formula. Journal of Food Safety, 2015, 35, 416-421.	2.3	14
56	A Novel Procedure on Vancomycin, Cephalothin and Sucrose for Isolation of <scp><i>C</i></scp> <i>ronobacter</i> spp. from Powdered Infant Formula. Journal of Food Safety, 2015, 35, 257-262.	2.3	0
57	Immunocapturedâ€loop Mediated Isothermal Amplification Assay for Detection of <scp><i>V</i></scp> <i>ibrio Parahaemolyticus</i> in Seafood. Journal of Food Safety, 2014, 34, 21-25.	2.3	16
58	lsolation and Phenotypic Characterization of <i>Cronobacter</i> from Dried Edible Macrofungi Samples. Journal of Food Science, 2014, 79, M1382-6.	3.1	22
59	The <i><scp>C</scp>ronobacter</i> sp. in milk and dairy products: Detection and typing. International Journal of Dairy Technology, 2014, 67, 167-175.	2.8	20
60	Occurrence and Characterization of <i>Cronobacter</i> spp. in Powdered Formula from Chinese Retail Markets. Foodborne Pathogens and Disease, 2014, 11, 307-312.	1.8	31
61	Resistance Characterization, Virulence Factors, and ERIC-PCR Fingerprinting of <i>Aeromonas veronii</i> Strains Isolated from Diseased <i>Trionyx sinensis</i> . Foodborne Pathogens and Disease, 2012, 9, 1053-1055.	1.8	3
62	The Characterization and Comparison of <i>Staphylococcus aureus</i> by Antibiotic Susceptibility Testing, Enterobacterial Repetitive Intergenic Consensus–Polymerase Chain Reaction, and Random Amplified Polymorphic DNA–Polymerase Chain Reaction. Foodborne Pathogens and Disease, 2012, 9, 168-171.	1.8	18
63	Detection of Viable <i>Cronobacter</i> spp. (<i>Enterobacter sakazakii</i>) by Oneâ€Step RTâ€PCR in Dry Aquatic Product. Journal of Food Science, 2012, 77, M616-9.	3.1	5
64	DETECTION OF <i>CRONOBACTER</i> IN INFANT FORMULA AND PHYLOGENETIC ANALYSIS ON αâ€GLUCOSIDA GENES. Journal of Food Safety, 2011, 31, 185-189.	4SE 2.3	3
65	Isolation of <i>Salmonella</i> from Meat Samples and Characterization by Enterobacterial Repetitive Intergenic Consensus–Polymerase Chain Reaction and Antibiotics Test. Foodborne Pathogens and Disease, 2011, 8, 935-937.	1.8	8
66	A Comparison of Polymerase Chain Reaction and International Organization for Standardization Methods for Determination of <i>Enterobacter sakazakii</i> Contamination of Infant Formulas from Chinese Mainland Markets. Foodborne Pathogens and Disease, 2009, 6, 1229-1234.	1.8	10
67	Analysis of a consensus fragment in ERIC-PCR fingerprinting of Enterobacter sakazakii. International Journal of Food Microbiology, 2009, 132, 172-175.	4.7	18
68	Development of an immobilization and detection method of Enterobacter sakazakii from powdered infant formula. Food Microbiology, 2008, 25, 648-652.	4.2	28
69	Analysis of major band of Enterobacter sakazakii by ERIC-PCR and development of a species-specific PCR for detection of Ent. sakazakii in dry food samples. Journal of Microbiological Methods, 2008, 75,	1.6	16