List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5078826/publications.pdf Version: 2024-02-01



**Δετρ Ηι λυινικ**λ

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models. European Journal of Agronomy, 2011, 35, 103-114.                                               | 1.9 | 408       |
| 2  | Agroclimatic conditions in Europe under climate change. Global Change Biology, 2011, 17, 2298-2318.                                                                                                                            | 4.2 | 315       |
| 3  | Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models. Field Crops Research, 2012, 133, 23-36.                                                        | 2.3 | 269       |
| 4  | Application of relative drought indices in assessing climate-change impacts on drought conditions in Czechia. Theoretical and Applied Climatology, 2009, 96, 155-171.                                                          | 1.3 | 191       |
| 5  | Effect of drought on yield variability of key crops in Czech Republic. Agricultural and Forest<br>Meteorology, 2009, 149, 431-442.                                                                                             | 1.9 | 179       |
| 6  | Cereal yield gaps across Europe. European Journal of Agronomy, 2018, 101, 109-120.                                                                                                                                             | 1.9 | 135       |
| 7  | Crop rotation modelling—A European model intercomparison. European Journal of Agronomy, 2015,<br>70, 98-111.                                                                                                                   | 1.9 | 125       |
| 8  | Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Climate Research, 2015, 65, 87-105.                                            | 0.4 | 122       |
| 9  | Mitigation efforts will not fully alleviate the increase in water scarcity occurrence probability in wheat-producing areas. Science Advances, 2019, 5, eaau2406.                                                               | 4.7 | 104       |
| 10 | Interactive effects of high temperature and drought stress during stem elongation, anthesis and early<br>grain filling on the yield formation and photosynthesis of winter wheat. Field Crops Research, 2018,<br>221, 182-195. | 2.3 | 98        |
| 11 | Variability of droughts in the Czech Republic, 1881–2006. Theoretical and Applied Climatology, 2009, 97, 297-315.                                                                                                              | 1.3 | 83        |
| 12 | Use of a soil moisture network for drought monitoring in the Czech Republic. Theoretical and Applied Climatology, 2012, 107, 99-111.                                                                                           | 1.3 | 73        |
| 13 | Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization. Journal of Agricultural Science, 2016, 154, 1218-1240.                                                          | 0.6 | 70        |
| 14 | Consequences of climate change for the soil climate in Central Europe and the central plains of the<br>United States. Climatic Change, 2013, 120, 405-418.                                                                     | 1.7 | 69        |
| 15 | Adaptation options for wheat in Europe will be limited by increased adverse weather events under climate change. Journal of the Royal Society Interface, 2015, 12, 20150721.                                                   | 1.5 | 69        |
| 16 | Drought trends over part of Central Europe between 1961 and 2014. Climate Research, 2016, 70, 143-160.                                                                                                                         | 0.4 | 69        |
| 17 | Regional climate change impacts on agricultural crop production in Central and Eastern Europe –<br>hotspots, regional differences and common trends. Journal of Agricultural Science, 2013, 151, 787-812.                      | 0.6 | 68        |
| 18 | Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment. Agricultural Systems, 2018, 159, 260-274.                                                                      | 3.2 | 68        |

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Simple snow cover model for agrometeorological applications. Agricultural and Forest<br>Meteorology, 2010, 150, 1115-1127.                                                                                               | 1.9 | 66        |
| 20 | Development and evaluation of the SoilClim model for water balance and soil climate estimates.<br>Agricultural Water Management, 2011, 98, 1249-1261.                                                                    | 2.4 | 63        |
| 21 | Soil moisture trends in the Czech Republic between 1961 and 2012. International Journal of Climatology, 2015, 35, 3733-3747.                                                                                             | 1.5 | 61        |
| 22 | Combined effects of drought and high temperature on photosynthetic characteristics in four winter wheat genotypes. Field Crops Research, 2018, 223, 137-149.                                                             | 2.3 | 57        |
| 23 | Expected changes in agroclimatic conditions in Central Europe. Climatic Change, 2011, 108, 261-289.                                                                                                                      | 1.7 | 55        |
| 24 | Could the changes in regional crop yields be a pointer of climatic change?. Agricultural and Forest<br>Meteorology, 2012, 166-167, 62-71.                                                                                | 1.9 | 55        |
| 25 | Czech Drought Monitor System for monitoring and forecasting agricultural drought and drought impacts. International Journal of Climatology, 2020, 40, 5941-5958.                                                         | 1.5 | 55        |
| 26 | Variability in the Water Footprint of Arable Crop Production across European Regions. Water<br>(Switzerland), 2017, 9, 93.                                                                                               | 1.2 | 54        |
| 27 | The extreme drought episode of August 2011–May 2012 in the Czech Republic. International Journal of Climatology, 2015, 35, 3335-3352.                                                                                    | 1.5 | 53        |
| 28 | Characteristic †fingerprints' of crop model responses to weather input data at different spatial<br>resolutions. European Journal of Agronomy, 2013, 49, 104-114.                                                        | 1.9 | 51        |
| 29 | Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change. Agricultural Systems, 2018, 159, 209-224.                                                      | 3.2 | 47        |
| 30 | Changing regional weather-crop yield relationships across Europe between 1901 and 2012. Climate Research, 2016, 70, 195-214.                                                                                             | 0.4 | 44        |
| 31 | Performance of process-based models for simulation of grain N in crop rotations across Europe.<br>Agricultural Systems, 2017, 154, 63-77.                                                                                | 3.2 | 43        |
| 32 | Relationships between the evaporative stress index and winter wheat and spring barley yield anomalies in the Czech Republic. Climate Research, 2016, 70, 215-230.                                                        | 0.4 | 41        |
| 33 | Assessing the combined hazards of drought, soil erosion and local flooding on agricultural land: a<br>Czech case study. Climate Research, 2016, 70, 231-249.                                                             | 0.4 | 40        |
| 34 | Is rainfed crop production in central Europe at risk? Using a regional climate model to produce high<br>resolution agroclimatic information for decision makers. Journal of Agricultural Science, 2010, 148,<br>639-656. | 0.6 | 39        |
| 35 | Drivers of soil drying in the Czech Republic between 1961 and 2012. International Journal of Climatology, 2015, 35, 2664-2675.                                                                                           | 1.5 | 37        |
| 36 | Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe. European Journal of Agronomy, 2017, 84, 152-165.                                                                                    | 1.9 | 35        |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Implications of crop model ensemble size and composition for estimates of adaptation effects and agreement of recommendations. Agricultural and Forest Meteorology, 2019, 264, 351-362.                            | 1.9 | 35        |
| 38 | Influence of climatic factors on the low yields of spring barley and winter wheat in Southern<br>Moravia (Czech Republic) during the 1961–2007 period. Theoretical and Applied Climatology, 2014, 117,<br>707-721. | 1.3 | 33        |
| 39 | Impacts of water availability and drought on maize yield – A comparison of 16 indicators. Agricultural<br>Water Management, 2017, 188, 126-135.                                                                    | 2.4 | 32        |
| 40 | Agricultural drought and spring barley yields in the Czech Republic. Plant, Soil and Environment, 2007, 53, 306-316.                                                                                               | 1.0 | 30        |
| 41 | †Fingerprints' of four crop models as affected by soil input data aggregation. European Journal of<br>Agronomy, 2014, 61, 35-48.                                                                                   | 1.9 | 28        |
| 42 | Modelling of yields and soil nitrogen dynamics for crop rotations by HERMES under different climate and soil conditions in the Czech Republic. Journal of Agricultural Science, 2014, 152, 188-204.                | 0.6 | 27        |
| 43 | Drought reconstruction based on grape harvest dates for the Czech Lands, 1499-2012. Climate Research, 2016, 70, 119-132.                                                                                           | 0.4 | 26        |
| 44 | Climate-driven changes of production regions in Central Europe. Plant, Soil and Environment, 2009, 55, 257-266.                                                                                                    | 1.0 | 24        |
| 45 | Assessing Uncertainties of Water Footprints Using an Ensemble of Crop Growth Models on Winter<br>Wheat. Water (Switzerland), 2016, 8, 571.                                                                         | 1.2 | 23        |
| 46 | Quantifying turbulent energy fluxes and evapotranspiration in agricultural field conditions: A comparison of micrometeorological methods. Agricultural Water Management, 2018, 209, 249-263.                       | 2.4 | 21        |
| 47 | Observed changes in the agroclimatic zones in the Czech Republic between 1961 and 2019. Plant, Soil and Environment, 2021, 67, 154-163.                                                                            | 1.0 | 20        |
| 48 | Effect of heat stress at anthesis on yield formation in winter wheat. Plant, Soil and Environment, 2017, 63, 139-144.                                                                                              | 1.0 | 17        |
| 49 | Water requirements of short rotation poplar coppice: Experimental and modelling analyses across<br>Europe. Agricultural and Forest Meteorology, 2018, 250-251, 343-360.                                            | 1.9 | 17        |
| 50 | Estimating the water use efficiency of spring barley using crop models. Journal of Agricultural Science, 2018, 156, 628-644.                                                                                       | 0.6 | 13        |
| 51 | Water balance, drought stress and yields for rainfed field crop rotations under present and future conditions in the Czech Republic. Climate Research, 2015, 65, 175-192.                                          | 0.4 | 13        |
| 52 | Performance of 13 crop simulation models and their ensemble for simulating four field crops in<br>Central Europe. Journal of Agricultural Science, 2021, 159, 69-89.                                               | 0.6 | 11        |
| 53 | Climate change impacts on selected aspects of the Czech agricultural production. Plant Protection Science, 2009, 45, S11-S19.                                                                                      | 0.7 | 10        |
| 54 | Drought Prediction System for Central Europe and Its Validation. Geosciences (Switzerland), 2018, 8, 104.                                                                                                          | 1.0 | 10        |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Carbon pool in soil under organic and conventional farming systems. Soil and Water Research, 2019, 14, 145-152.                                                                                                                   | 0.7 | 10        |
| 56 | Observed and estimated consequences of climate change for the fire weather regime in the<br>moist-temperate climate of the Czech Republic. Agricultural and Forest Meteorology, 2021, 310, 108583.                                | 1.9 | 10        |
| 57 | Increasing available water capacity as a factor for increasing drought resilience or potential conflict<br>over water resources under present and future climate conditions. Agricultural Water Management,<br>2022, 264, 107460. | 2.4 | 10        |
| 58 | Potential of water balance and remote sensing-based evapotranspiration models to predict yields of spring barley and winter wheat in the Czech Republic. Agricultural Water Management, 2021, 256, 107064.                        | 2.4 | 9         |
| 59 | Validity and reliability of drought reporters in estimating soil water content and drought impacts in central Europe. Agricultural and Forest Meteorology, 2022, 315, 108808.                                                     | 1.9 | 9         |
| 60 | Observed and expected changes in wildfire-conducive weather and fire events in peri-urban zones and key nature reserves of the Czech Republic. Climate Research, 2020, 82, 33-54.                                                 | 0.4 | 8         |
| 61 | Estimating Crop Yields at the Field Level Using Landsat and MODIS Products. Acta Universitatis<br>Agriculturae Et Silviculturae Mendelianae Brunensis, 2018, 66, 1141-1150.                                                       | 0.2 | 7         |
| 62 | Calibration and Validation of the Crop Growth Model DAISY for Spring Barley in the Czech Republic.<br>Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2015, 63, 1177-1186.                                | 0.2 | 6         |
| 63 | Expected effects of climate change on the production and water use of crop rotation management<br>reproduced by crop model ensemble for Czech Republic sites. European Journal of Agronomy, 2022, 134,<br>126446.                 | 1.9 | 6         |
| 64 | The Challenges of Measuring Environmental Sustainability. Political Research Quarterly, 2009, 62,<br>205-208.                                                                                                                     | 1.1 | 5         |
| 65 | Future agroclimatic conditions and implications for European grasslands. Biologia Plantarum, 0, 64,<br>865-880.                                                                                                                   | 1.9 | 5         |
| 66 | Evaluating drought risk for permanent grasslands under present and future climate conditions.<br>Procedia Environmental Sciences, 2011, 3, 50-57.                                                                                 | 1.3 | 4         |
| 67 | The performance of Metop Advanced SCATterometer soil moisture data as a complementary source for<br>the estimation of crop-soil water balance in Central Europe. Journal of Agricultural Science, 2018,<br>156, 577-598.          | 0.6 | 4         |
| 68 | Trends in temperature and precipitation in the period of 1961-2010 in ŽabÄice locality. Acta Universitatis<br>Agriculturae Et Silviculturae Mendelianae Brunensis, 2013, 61, 1521-1531.                                           | 0.2 | 4         |
| 69 | ls Crop Growth Model Able to Reproduce Drought Stress Caused by Rain-Out Shelters Above Winter<br>Wheat?. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 2018, 66, 225-233.                              | 0.2 | 4         |
| 70 | Droughts and Drought Management in the Czech Republic in a Changing Climate. Drought and Water<br>Crises, 2017, , 461-480.                                                                                                        | 0.1 | 4         |
| 71 | ANNUAL AND INTRA-ANNUAL WATER BALANCE COMPONENTS OF A SHORT ROTATION POPLAR COPPICE<br>BASED ON SAP FLOW AND MICROMETEOROLOGICAL AND HYDROLOGICAL APPROACHES. Acta<br>Horticulturae, 2013, , 401-408.                             | 0.1 | 3         |
| 72 | The Possibility of Consensus Regarding Climate Change Adaptation Policies in Agriculture and Forestry among Stakeholder Groups in the Czech Republic. Environmental Management, 2021, , 1.                                        | 1.2 | 2         |

| #  | Article                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Empirical model for estimating daily erythemal UV radiation in the Central European region.<br>Meteorologische Zeitschrift, 2007, 16, 183-190. | 0.5 | 1         |
| 74 | Climate Change Impacts on Czech Agriculture. , 0, , .                                                                                          |     | 1         |
| 75 | Yield Formation Parameters of Selected Winter Wheat Genotypes in Response to Water Shortage.<br>Agronomy, 2022, 12, 831.                       | 1.3 | 1         |