Jyoti Shah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5078643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The salicylic acid loop in plant defense. Current Opinion in Plant Biology, 2003, 6, 365-371.	7.1	513
2	Characterization of a Salicylic Acid-Insensitive Mutant (sai1) of Arabidopsis thaliana, Identified in a Selective Screen Utilizing the SA-Inducible Expression of the tms2 Gene. Molecular Plant-Microbe Interactions, 1997, 10, 69-78.	2.6	493
3	NPR1 Differentially Interacts with Members of the TGA/OBF Family of Transcription Factors That Bind an Element of the PR-1 Gene Required for Induction by Salicylic Acid. Molecular Plant-Microbe Interactions, 2000, 13, 191-202.	2.6	448
4	Salicylic Acid and Disease Resistance in Plants. Critical Reviews in Plant Sciences, 1999, 18, 547-575.	5.7	446
5	Temporal-Spatial Interaction between Reactive Oxygen Species and Abscisic Acid Regulates Rapid Systemic Acclimation in Plants Â. Plant Cell, 2013, 25, 3553-3569.	6.6	316
6	Genetically Engineered Resistance to Fusarium Head Blight in Wheat by Expression of Arabidopsis NPR1. Molecular Plant-Microbe Interactions, 2006, 19, 123-129.	2.6	313
7	A Gain-of-Function Mutation in an Arabidopsis Toll Interleukin1 Receptor–Nucleotide Binding Site–Leucine-Rich Repeat Type R Gene Triggers Defense Responses and Results in Enhanced Disease Resistance. Plant Cell, 2002, 14, 3149-3162.	6.6	281
8	Long-distance communication and signal amplification in systemic acquired resistance. Frontiers in Plant Science, 2013, 4, 30.	3.6	268
9	The Arabidopsis ssi1 Mutation Restores Pathogenesis-Related Gene Expression in npr1 Plants and Renders Defensin Gene Expression Salicylic Acid Dependent. Plant Cell, 1999, 11, 191-206.	6.6	267
10	Lipids, Lipases, and Lipid-Modifying Enzymes in Plant Disease Resistance. Annual Review of Phytopathology, 2005, 43, 229-260.	7.8	255
11	Resistance to Turnip Crinkle Virus in Arabidopsis Is Regulated by Two Host Genes and Is Salicylic Acid Dependent but NPR1, Ethylene, and Jasmonate Independent. Plant Cell, 2000, 12, 677-690.	6.6	254
12	RCY1 , an Arabidopsis thaliana RPP8/HRT family resistance gene, conferring resistance to cucumber mosaic virus requires salicylic acid, ethylene and a novel signal transduction mechanism. Plant Journal, 2002, 32, 655-667.	5.7	228
13	Wounding Stimulates the Accumulation of Glycerolipids Containing Oxophytodienoic Acid and Dinor-Oxophytodienoic Acid in Arabidopsis Leaves. Plant Physiology, 2006, 142, 28-39.	4.8	202
14	An abietane diterpenoid is a potent activator of systemic acquired resistance. Plant Journal, 2012, 71, 161-172.	5.7	198
15	A recessive mutation in the Arabidopsis SSI2 gene confers SA- and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens. Plant Journal, 2001, 25, 563-574.	5.7	193
16	Plants under attack: systemic signals in defence. Current Opinion in Plant Biology, 2009, 12, 459-464.	7.1	181
17	Premature Leaf Senescence Modulated by the Arabidopsis PHYTOALEXIN DEFICIENT4 Gene Is Associated with Defense against the Phloem-Feeding Green Peach Aphid. Plant Physiology, 2005, 139, 1927-1934.	4.8	179
18	The Arabidopsis thaliana Dihydroxyacetone Phosphate Reductase Gene SUPPRESSOR OF FATTY ACID DESATURASE DEFICIENCY1 Is Required for Glycerolipid Metabolism and for the Activation of Systemic Acquired Resistance[W]. Plant Cell, 2004, 16, 465-477.	6.6	175

Јуоті Ѕнан

#	Article	IF	CITATIONS
19	Antagonistic Interactions between the SA and JA Signaling Pathways in Arabidopsis Modulate Expression of Defense Genes and Gene-for-Gene Resistance to Cucumber Mosaic Virus. Plant and Cell Physiology, 2004, 45, 803-809.	3.1	163
20	Salicylic Acid Regulates Basal Resistance to Fusarium Head Blight in Wheat. Molecular Plant-Microbe Interactions, 2012, 25, 431-439.	2.6	154
21	Involvement of Salicylate and Jasmonate Signaling Pathways in <i>Arabidopsis</i> Interaction with <i>Fusarium graminearum</i> . Molecular Plant-Microbe Interactions, 2010, 23, 861-870.	2.6	150
22	Plastid ï‰3â€fatty acid desaturaseâ€dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of <i>Arabidopsis thaliana</i> is independent of jasmonic acid. Plant Journal, 2008, 54, 106-117.	5.7	148
23	Plant defense against aphids, the pest extraordinaire. Plant Science, 2019, 279, 96-107.	3.6	148
24	Environmentally sensitive, SA-dependent defense responses in the cpr22 mutant of Arabidopsis. Plant Journal, 2001, 26, 447-459.	5.7	147
25	<i>TREHALOSE PHOSPHATE SYNTHASE11</i> â€dependent trehalose metabolism promotes <i>Arabidopsis thaliana</i> defense against the phloemâ€feeding insect <i>Myzus persicae</i> . Plant Journal, 2011, 67, 94-104.	5.7	127
26	Signaling by small metabolites in systemic acquired resistance. Plant Journal, 2014, 79, 645-658.	5.7	126
27	Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR1. Transgenic Research, 2010, 19, 959-975.	2.4	113
28	Phloemâ€based resistance to green peach aphid is controlled by Arabidopsis <i>PHYTOALEXIN DEFICIENT4</i> without its signaling partner <i>ENHANCED DISEASE SUSCEPTIBILITY1</i> . Plant Journal, 2007, 52, 332-341.	5.7	106
29	Arabidopsis sfd Mutants Affect Plastidic Lipid Composition and Suppress Dwarfing, Cell Death, and the Enhanced Disease Resistance Phenotypes Resulting from the Deficiency of a Fatty Acid Desaturase. Plant Cell, 2003, 15, 2383-2398.	6.6	96
30	Arabidopsis thaliana—Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids. Frontiers in Plant Science, 2013, 4, 213.	3.6	91
31	Lipid changes after leaf wounding in <i>Arabidopsis thaliana</i> : expanded lipidomic data form the basis for lipid coâ€occurrence analysis. Plant Journal, 2014, 80, 728-743.	5.7	90
32	Root-Derived Oxylipins Promote Green Peach Aphid Performance on <i>Arabidopsis</i> Foliage. Plant Cell, 2012, 24, 1643-1653.	6.6	84
33	Direct Infusion Mass Spectrometry of Oxylipin-Containing Arabidopsis Membrane Lipids Reveals Varied Patterns in Different Stress Responses Â. Plant Physiology, 2012, 158, 324-339.	4.8	81
34	<i>Arabidopsis thaliana FLOWERING LOCUS D</i> Is Required for Systemic Acquired Resistance. Molecular Plant-Microbe Interactions, 2013, 26, 1079-1088.	2.6	80
35	Identification of a salicylic acid-responsive element in the promoter of the tobacco pathogenesis-related beta-1,3-glucanase gene, PR-2d. Plant Journal, 1996, 10, 1089-1101.	5.7	71
36	Facilitation of <i>Fusarium graminearum</i> Infection by 9-Lipoxygenases in <i>Arabidopsis</i> and Wheat. Molecular Plant-Microbe Interactions, 2015, 28, 1142-1152.	2.6	65

Јүоті Ѕнан

#	Article	IF	CITATIONS
37	Elicitors and defense gene induction in plants with altered lignin compositions. New Phytologist, 2018, 219, 1235-1251.	7.3	61
38	Ethylene and Jasmonic Acid Signaling Affect the NPR1-Independent Expression of Defense Genes Without Impacting Resistance to Pseudomonas syringae and Peronospora parasitica in the Arabidopsis ssi1 Mutant. Molecular Plant-Microbe Interactions, 2003, 16, 588-599.	2.6	58
39	Salicylic acid: signal perception and transduction. New Comprehensive Biochemistry, 1999, 33, 513-541.	0.1	57
40	Discrimination of Arabidopsis PAD4 Activities in Defense against Green Peach Aphid and Pathogens Â. Plant Physiology, 2012, 158, 1860-1872.	4.8	54
41	Arabidopsis ssi2-Conferred Susceptibility to Botrytis cinerea Is Dependent on EDS5 and PAD4. Molecular Plant-Microbe Interactions, 2005, 18, 363-370.	2.6	52
42	High Level Expression of a Virus Resistance Gene, <i>RCY1</i> , Confers Extreme Resistance to <i>Cucumber mosaic virus</i> in <i>Arabidopsis thaliana</i> . Molecular Plant-Microbe Interactions, 2008, 21, 1398-1407.	2.6	52
43	Enhanced Resistance to Cucumber mosaic virus in the Arabidopsis thaliana ssi2 Mutant Is Mediated via an SA-Independent Mechanism. Molecular Plant-Microbe Interactions, 2004, 17, 623-632.	2.6	51
44	Antibiosis against the green peach aphid requires the Arabidopsis thaliana MYZUS PERSICAE-INDUCED LIPASE1 gene. Plant Journal, 2010, 64, 800-811.	5.7	47
45	PAD4-Dependent Antibiosis Contributes to the ssi2-Conferred Hyper-Resistance to the Green Peach Aphid. Molecular Plant-Microbe Interactions, 2010, 23, 618-627.	2.6	46
46	Arabidopsis <i>ACTIN-DEPOLYMERIZING FACTOR3</i> Is Required for Controlling Aphid Feeding from the Phloem. Plant Physiology, 2018, 176, 879-890.	4.8	46
47	<i>Arabidopsis thaliana</i> â€"Aphid Interaction. The Arabidopsis Book, 2012, 10, e0159.	0.5	45
48	Plant defence against aphids: the PAD4 signalling nexus. Journal of Experimental Botany, 2015, 66, 449-454.	4.8	42
49	Tomato responds to green peach aphid infestation with the activation of trehalose metabolism and starch accumulation. Plant Signaling and Behavior, 2012, 7, 605-607.	2.4	41
50	Single amino acid alterations in Arabidopsis thaliana RCY1 compromise resistance to Cucumber mosaic virus, but differentially suppress hypersensitive response-like cell death. Plant Molecular Biology, 2006, 62, 669-682.	3.9	40
51	Metabolic engineering of raffinose-family oligosaccharides in the phloem reveals alterations in carbon partitioning and enhances resistance to green peach aphid. Frontiers in Plant Science, 2013, 4, 263.	3.6	38
52	Salicylic Acid in Plant Disease Resistance. , 2007, , 335-370.		37
53	Leaf Lipid Alterations in Response to Heat Stress of Arabidopsis thaliana. Plants, 2020, 9, 845.	3.5	36
54	<i>Arabidopsis thaliana cdd1</i> mutant uncouples the constitutive activation of salicylic acid signalling from growth defects. Molecular Plant Pathology, 2011, 12, 855-865.	4.2	30

Јүоті Ѕнан

#	Article	IF	CITATIONS
55	The Combined Action of ENHANCED DISEASE SUSCEPTIBILITY1, PHYTOALEXIN DEFICIENT4, and SENESCENCE-ASSOCIATED101 Promotes Salicylic Acid-Mediated Defenses to Limit Fusarium graminearum Infection in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 2015, 28, 943-953.	2.6	29
56	Arabidopsis-Green Peach Aphid Interaction: Rearing the Insect, No-choice and Fecundity Assays, and Electrical Penetration Graph Technique to Study Insect Feeding Behavior. Bio-protocol, 2018, 8, e2950.	0.4	29
57	Targeting the patternâ€triggered immunity pathway to enhance resistance to <i>Fusarium graminearum</i> . Molecular Plant Pathology, 2019, 20, 626-640.	4.2	23
58	Modifications of membrane lipids in response to wounding of <i>Arabidopsis thaliana</i> leaves. Plant Signaling and Behavior, 2015, 10, e1056422.	2.4	20
59	Cavity surface residues of <scp>PAD4</scp> and <scp>SAG101</scp> contribute to <scp>EDS1</scp> dimer signaling specificity in plant immunity. Plant Journal, 2022, 110, 1415-1432.	5.7	20
60	Biochemical and Molecular-Genetic Characterization of SFD1's Involvement in Lipid Metabolism and Defense Signaling. Frontiers in Plant Science, 2012, 3, 26.	3.6	19
61	Emerging role of roots in plant responses to aboveground insect herbivory. Insect Science, 2013, 20, 286-296.	3.0	18
62	Photochemical formation of chitosan-stabilized near-infrared-absorbing silver Nanoworms: A "Green―synthetic strategy and activity on Gram-negative pathogenic bacteria. Journal of Colloid and Interface Science, 2017, 507, 437-452.	9.4	16
63	The <i>Arabidopsis</i> PAD4 Lipase-Like Domain Is Sufficient for Resistance to Green Peach Aphid. Molecular Plant-Microbe Interactions, 2020, 33, 328-335.	2.6	15
64	The green peach aphid,Myzus persicae, acquires a LIPOXYGENASE5-derived oxylipin fromArabidopsis thaliana, which promotes colonization of the host plant. Plant Signaling and Behavior, 2013, 8, e22735.	2.4	12
65	Establishment of a Fusarium graminearum Infection Model in Arabidopsis thaliana Leaves and Floral Tissues. Bio-protocol, 2016, 6, .	0.4	11
66	Dehydroabietinal promotes flowering time and plant defense in Arabidopsis via the autonomous pathway genes FLOWERING LOCUS D, FVE, and RELATIVE OF EARLY FLOWERING 6. Journal of Experimental Botany, 2020, 71, 4903-4913.	4.8	10
67	Green peach aphid infestation induces Arabidopsis <i>PHYTOALEXIN-DEFICIENT4</i> expression at site of insect feeding. Plant Signaling and Behavior, 2012, 7, 1431-1433.	2.4	8
68	Editorial: Advances in Plant-Hemipteran Interactions. Frontiers in Plant Science, 2017, 8, 1652.	3.6	8
69	Phloem: At the center of action in plant defense against aphids. Journal of Plant Physiology, 2022, 273, 153695.	3.5	8
70	Evaluation of the efficiency of Pd/H2-catalyzed benzylic H/D exchange of dehydroabietinal with D2O and synthesis of a tritium-labeled analogue. Journal of Labelled Compounds and Radiopharmaceuticals, 2014, 57, 53-56.	1.0	6
71	Lipidomic Analysis of Arabidopsis T-DNA Insertion Lines Leads to Identification and Characterization of C-Terminal Alterations in FATTY ACID DESATURASE 6. Plant and Cell Physiology, 2022, 63, 1193-1204.	3.1	5
72	Signaling function of dehydroabietinal in plant defense and development. Phytochemistry Reviews, 2016, 15, 1115-1126.	6.5	3

Јүоті Ѕнан

#	Article	IF	CITATIONS
73	Lipases in Signaling Plant Defense Responses. Signaling and Communication in Plants, 2014, , 207-228.	0.7	3
74	Opposing effects of <i>MYZUS PERSICAEâ€INDUCED LIPASE 1</i> and jasmonic acid influence the outcome of <i>Arabidopsis thaliana–Fusarium graminearum</i> interaction. Molecular Plant Pathology, 2022, ,	4.2	3
75	CYP720A1 function in roots is required for flowering time and systemic acquired resistance in the foliage of Arabidopsis. Journal of Experimental Botany, 2020, 71, 6612-6622.	4.8	1
76	Specific Changes in Arabidopsis thaliana Rosette Lipids during Freezing Can Be Associated with Freezing Tolerance. Metabolites, 2022, 12, 385.	2.9	1
77	Long-Distance Signaling in Systemic Acquired Resistance. Signaling and Communication in Plants, 2013, , 1-21.	0.7	0