Jiaqi Dai

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5078325/jiaqi-dai-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

13,767 58 104 103 h-index g-index citations papers 16,967 18.6 6.5 104 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
103	Rapid Synthesis and Sintering of Metals from Powders. <i>Advanced Science</i> , 2021 , 8, e2004229	13.6	5
102	Denary oxide nanoparticles as highly stable catalysts for methane combustion. <i>Nature Catalysis</i> , 2021 , 4, 62-70	36.5	45
101	Stamping Flexible Li Alloy Anodes. <i>Advanced Materials</i> , 2021 , 33, e2005305	24	16
100	A general method to synthesize and sinter bulk ceramics in seconds. <i>Science</i> , 2020 , 368, 521-526	33.3	153
99	A Strong, Tough, and Scalable Structural Material from Fast-Growing Bamboo. <i>Advanced Materials</i> , 2020 , 32, e1906308	24	69
98	Fire-Resistant Structural Material Enabled by an Anisotropic Thermally Conductive Hexagonal Boron Nitride Coating. <i>Advanced Functional Materials</i> , 2020 , 30, 1909196	15.6	37
97	High-Performance, Scalable Wood-Based Filtration Device with a Reversed-Tree Design. <i>Chemistry of Materials</i> , 2020 , 32, 1887-1895	9.6	29
96	Predicting the flexural strength of Li-ion-conducting garnet type oxide for solid-state-batteries. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 5186-5195	3.8	5
95	Rapid Processing of Whole Bamboo with Exposed, Aligned Nanofibrils toward a High-Performance Structural Material. <i>ACS Nano</i> , 2020 , 14, 5194-5202	16.7	36
94	Overcoming immiscibility toward bimetallic catalyst library. Science Advances, 2020, 6, eaaz6844	14.3	42
93	Giant tunability of interlayer friction in graphite via ion intercalation. <i>Extreme Mechanics Letters</i> , 2020 , 35, 100616	3.9	4
92	Salinity-Gradient Power Generation with Ionized Wood Membranes. <i>Advanced Energy Materials</i> , 2020 , 10, 1902590	21.8	47
91	Printable, high-performance solid-state electrolyte films. <i>Science Advances</i> , 2020 , 6,	14.3	25
90	Scalable aesthetic transparent wood for energy efficient buildings. <i>Nature Communications</i> , 2020 , 11, 3836	17.4	71
89	High-throughput, combinatorial synthesis of multimetallic nanoclusters. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 6316-6322	11.5	50
88	Clear Wood toward High-Performance Building Materials. ACS Nano, 2019, 13, 9993-10001	16.7	70
87	A radiative cooling structural material. <i>Science</i> , 2019 , 364, 760-763	33.3	419

(2018-2019)

86	Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. <i>Nature Materials</i> , 2019 , 18, 608-613	27	187
85	Millisecond synthesis of CoS nanoparticles for highly efficient overall water splitting. <i>Nano Research</i> , 2019 , 12, 2259-2267	10	57
84	A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Science Advances, 2019, 5, ea	au4238	8 81
83	Flexible Solid-State Electrolyte with Aligned Nanostructures Derived from Wood 2019 , 1, 354-361		34
82	Hydrophobic nanostructured wood membrane for thermally efficient distillation. <i>Science Advances</i> , 2019 , 5, eaaw3203	14.3	47
81	Decoupling Ionic and Electronic Pathways in Low-Dimensional Hybrid Conductors. <i>Journal of the American Chemical Society</i> , 2019 , 141, 17830-17837	16.4	20
80	Single-digit-micrometer thickness wood speaker. <i>Nature Communications</i> , 2019 , 10, 5084	17.4	28
79	Transient, in situ synthesis of ultrafine ruthenium nanoparticles for a high-rate Litto2 battery. <i>Energy and Environmental Science</i> , 2019 , 12, 1100-1107	35.4	77
78	An Electron/Ion Dual-Conductive Alloy Framework for High-Rate and High-Capacity Solid-State Lithium-Metal Batteries. <i>Advanced Materials</i> , 2019 , 31, e1804815	24	128
77	Transparent, Anisotropic Biofilm with Aligned Bacterial Cellulose Nanofibers. <i>Advanced Functional Materials</i> , 2018 , 28, 1707491	15.6	96
76	Scalable and Highly Efficient Mesoporous Wood-Based Solar Steam Generation Device: Localized Heat, Rapid Water Transport. <i>Advanced Functional Materials</i> , 2018 , 28, 1707134	15.6	254
75	Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. <i>Science Advances</i> , 2018 , 4, eaar3724	14.3	204
74	Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3,000 K. <i>Nature Energy</i> , 2018 , 3, 148-156	62.3	69
73	Anisotropic, Mesoporous Microfluidic Frameworks with Scalable, Aligned Cellulose Nanofibers. <i>ACS Applied Materials & Discrete Applied & Discr</i>	9.5	33
72	Extrusion-Based 3D Printing of Hierarchically Porous Advanced Battery Electrodes. <i>Advanced Materials</i> , 2018 , 30, e1705651	24	164
71	Processing bulk natural wood into a high-performance structural material. <i>Nature</i> , 2018 , 554, 224-228	50.4	558
7°	Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 3770-3775	11.5	178
69	Universal Soldering of Lithium and Sodium Alloys on Various Substrates for Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1701963	21.8	125

68	Plasmonic Wood for High-Efficiency Solar Steam Generation. Advanced Energy Materials, 2018, 8, 1701	028 1.8	472
67	Hierarchically Porous, Ultrathick, B reathable I Wood-Derived Cathode for Lithium-Oxygen Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1701203	21.8	109
66	Isotropic Paper Directly from Anisotropic Wood: Top-Down Green Transparent Substrate Toward Biodegradable Electronics. <i>ACS Applied Materials & District Research</i> , 10, 28566-28571	9.5	49
65	High-Temperature Atomic Mixing toward Well-Dispersed Bimetallic Electrocatalysts. <i>Advanced Energy Materials</i> , 2018 , 8, 1800466	21.8	24
64	Catalyst-Free Carbon Nanotube Growth in Confined Space High Temperature Gradient. <i>Research</i> , 2018 , 2018, 1793784	7.8	6
63	Wood-Based Nanotechnologies toward Sustainability. <i>Advanced Materials</i> , 2018 , 30, 1703453	24	229
62	Textile Inspired Lithium-Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways. <i>Advanced Materials</i> , 2018 , 30, 1704907	24	63
61	Interface Engineering for Garnet-Based Solid-State Lithium-Metal Batteries: Materials, Structures, and Characterization. <i>Advanced Materials</i> , 2018 , 30, e1802068	24	135
60	Flexible, Bio-Compatible Nanofluidic Ion Conductor. <i>Chemistry of Materials</i> , 2018 , 30, 7707-7713	9.6	36
59	Epitaxial Welding of Carbon Nanotube Networks for Aqueous Battery Current Collectors. <i>ACS Nano</i> , 2018 , 12, 5266-5273	16.7	36
58	All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. <i>Energy and Environmental Science</i> , 2017 , 10, 538-545	35.4	451
57	In Situ, Fast, High-Temperature Synthesis of Nickel Nanoparticles in Reduced Graphene Oxide Matrix. <i>Advanced Energy Materials</i> , 2017 , 7, 1601783	21.8	19
56	Design of High Capacity Dissoluble Electrodes for All Transient Batteries. <i>Advanced Functional Materials</i> , 2017 , 27, 1605724	15.6	18
55	A carbon-based 3D current collector with surface protection for Li metal anode. <i>Nano Research</i> , 2017 , 10, 1356-1365	10	139
54	High Temperature Synthesis of Single-Component Metallic Nanoparticles. <i>ACS Central Science</i> , 2017 , 3, 294-301	16.8	26
53	Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures. <i>ACS Nano</i> , 2017 , 11, 4801-4807	16.7	113
52	Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal\(\begin{aligned} \begin{aligned} \text{ulfur} \\ \text{batteries}. \\ \text{Energy and Environmental Science}, \text{ 2017}, 10, 1568-1575 \end{aligned}	35.4	368
51	Encapsulation of Metallic Na in an Electrically Conductive Host with Porous Channels as a Highly Stable Na Metal Anode. <i>Nano Letters</i> , 2017 , 17, 3792-3797	11.5	191

50	Super-Clear Nanopaper from Agro-Industrial Waste for Green Electronics. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600539	5.4	19
49	Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. <i>Science Advances</i> , 2017 , 3, e1601659	14.3	482
48	Anisotropic, Transparent Films with Aligned Cellulose Nanofibers. <i>Advanced Materials</i> , 2017 , 29, 160628 4	1 4	137
47	High-capacity, low-tortuosity, and channel-guided lithium metal anode. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 3584-3589	11.5	331
46	Negating interfacial impedance in garnet-based solid-state Li metal batteries. <i>Nature Materials</i> , 2017 , 16, 572-579	27	1192
45	Progress in 3D Printing of Carbon Materials for Energy-Related Applications. <i>Advanced Materials</i> , 2017 , 29, 1603486	2 4	291
44	Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes. <i>Nano Letters</i> , 2017 , 17, 565-571	11.5	416
43	Tree-Inspired Design for High-Efficiency Water Extraction. <i>Advanced Materials</i> , 2017 , 29, 1704107	24	346
42	In Situ Neutron Depth Profiling of Lithium Metal-Garnet Interfaces for Solid State Batteries. <i>Journal of the American Chemical Society</i> , 2017 , 139, 14257-14264	16.4	117
41	Highly Anisotropic Conductors. <i>Advanced Materials</i> , 2017 , 29, 1703331	24	57
40	Cellulose-Nanofiber-Enabled 3D Printing of a Carbon-Nanotube Microfiber Network. <i>Small Methods</i> , 2017 , 1, 1700222	12.8	89
39	Inverted battery design as ion generator for interfacing with biosystems. <i>Nature Communications</i> , 2017 , 8, 15609	17.4	17
38	Universal, In Situ Transformation of Bulky Compounds into Nanoscale Catalysts by High-Temperature Pulse. <i>Nano Letters</i> , 2017 , 17, 5817-5822	11.5	23
37	A solid state energy storage device with supercapacitor B attery hybrid design. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 15266-15272	13	20
36	A High-Performance, Low-Tortuosity Wood-Carbon Monolith Reactor. <i>Advanced Materials</i> , 2017 , 29, 1604	1257	69
35	A Solution-Processed High-Temperature, Flexible, Thin-Film Actuator. <i>Advanced Materials</i> , 2016 , 28, 8618	<u>1</u> -β62	442
34	In Situ Transmission Electron Microscopy Observation of Sodiation Desodiation in a Long Cycle, High-Capacity Reduced Graphene Oxide Sodium-Ion Battery Anode. <i>Chemistry of Materials</i> , 2016 , 28, 6528-6535	9.6	59
33	Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films. Nature Communications, 2016 , 7, 12332	17.4	74

32	Thermally conductive, dielectric PCM-boron nitride nanosheet composites for efficient electronic system thermal management. <i>Nanoscale</i> , 2016 , 8, 19326-19333	7.7	47
31	Flash-induced reduced graphene oxide as a Sn anode host for high performance sodium ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 18306-18313	13	39
30	Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 7094-9	11.5	593
29	Extreme Light Management in Mesoporous Wood Cellulose Paper for Optoelectronics. <i>ACS Nano</i> , 2016 , 10, 1369-77	16.7	133
28	Carbonized-leaf Membrane with Anisotropic Surfaces for Sodium-ion Battery. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 2204-10	9.5	124
27	Nanocarbon Paper: Flexible, High Temperature, Planar Lighting with Large Scale Printable Nanocarbon Paper (Adv. Mater. 23/2016). <i>Advanced Materials</i> , 2016 , 28, 4566	24	3
26	Flexible, High Temperature, Planar Lighting with Large Scale Printable Nanocarbon Paper. <i>Advanced Materials</i> , 2016 , 28, 4684-91	24	47
25	Highly Anisotropic, Highly Transparent Wood Composites. <i>Advanced Materials</i> , 2016 , 28, 5181-7	24	342
24	Ultra-Thick, Low-Tortuosity, and Mesoporous Wood Carbon Anode for High-Performance Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1600377	21.8	205
23	Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries. <i>Advanced Materials</i> , 2016 , 28, 2587-94	24	443
22	All-Component Transient Lithium-Ion Batteries. Advanced Energy Materials, 2016, 6, 1502496	21.8	37
21	Solvo-thermal microwave-powered two-dimensional material exfoliation. <i>Chemical Communications</i> , 2016 , 52, 5757-60	5.8	23
20	Light management in plasticpaper hybrid substrate towards high-performance optoelectronics. Energy and Environmental Science, 2016 , 9, 2278-2285	35.4	85
19	Improving the High-Voltage Li2FeMn3O8 Cathode by Chlorine Doping. <i>ACS Applied Materials & Interfaces</i> , 2016 , 8, 10820-5	9.5	13
18	Three-Dimensional Printable High-Temperature and High-Rate Heaters. ACS Nano, 2016, 10, 5272-9	16.7	137
17	Electrochemical Intercalation of Lithium Ions into NbSe2 Nanosheets. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 11390-5	9.5	40
16	Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. Journal of the American Chemical Society, 2016 , 138, 12258-62	16.4	424
15	Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. <i>Chemical Society Reviews</i> , 2016 , 45, 6742-6765	58.5	243

LIST OF PUBLICATIONS

14	Thermally Conductive, Electrical Insulating, Optically Transparent Bi-Layer Nanopaper. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 28838-28843	9.5	39
13	Rapid, in Situ Synthesis of High Capacity Battery Anodes through High Temperature Radiation-Based Thermal Shock. <i>Nano Letters</i> , 2016 , 16, 5553-8	11.5	52
12	Wood Composite as an Energy Efficient Building Material: Guided Sunlight Transmittance and Effective Thermal Insulation. <i>Advanced Energy Materials</i> , 2016 , 6, 1601122	21.8	154
11	Self-Powered Human-Interactive Transparent Nanopaper Systems. ACS Nano, 2015, 9, 7399-406	16.7	85
10	Transient Rechargeable Batteries Triggered by Cascade Reactions. <i>Nano Letters</i> , 2015 , 15, 4664-71	11.5	60
9	Sodium-Ion Intercalated Transparent Conductors with Printed Reduced Graphene Oxide Networks. <i>Nano Letters</i> , 2015 , 15, 3763-9	11.5	41
8	Holey Graphene Nanomanufacturing: Structure, Composition, and Electrochemical Properties. <i>Advanced Functional Materials</i> , 2015 , 25, 2920-2927	15.6	123
7	Chemically Crushed Wood Cellulose Fiber towards High-Performance Sodium-Ion Batteries. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> (2015), 7, 23291-6	9.5	101
6	In Situ Investigations of Li-MoS2 with Planar Batteries. Advanced Energy Materials, 2015, 5, 1401742	21.8	78
5	Rapid Dissolving-Debonding Strategy for Optically Transparent Paper Production. <i>Scientific Reports</i> , 2015 , 5, 17703	4.9	6
4	Silver nanowire transparent conducting paper-based electrode with high optical haze. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 1248-1254	7.1	120
3	Highly Conductive Microfiber of Graphene Oxide Templated Carbonization of Nanofibrillated Cellulose. <i>Advanced Functional Materials</i> , 2014 , 24, 7366-7372	15.6	82
2	Highly transparent paper with tunable haze for green electronics. <i>Energy and Environmental Science</i> , 2014 , 7, 3313-3319	35.4	96
1	Sustainable off-grid desalination of hypersaline waters using Janus wood evaporators. <i>Energy and Environmental Science</i> ,	35.4	21