Bart Blanpain

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5078250/bart-blanpain-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

88 316 9,542 44 h-index g-index citations papers 10,839 6.24 3.7 322 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
316	Contact Line Undulation Induced Capillary Interaction Between Micron-Sized Ce2O3 Inclusions at the Ar Gas/Liquid Steel Interface. <i>Minerals, Metals and Materials Series</i> , 2022 , 197-207	0.3	
315	Zn Fuming Kinetics in a Bubble-Stirred Molten Slag Bath. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2022 , 53, 1308	2.5	0
314	Correlating the amorphous phase structure of vitrified bauxite residue (red mud) to the initial reactivity in binder systems. <i>Cement and Concrete Composites</i> , 2022 , 127, 104410	8.6	3
313	Investigation of Bath/Freeze Lining Interface Temperature Based on the Rheology of the Slag. <i>Jom</i> , 2022 , 74, 274	2.1	1
312	Selective removal of arsenic from crude antimony trioxide by leaching with nitric acid. <i>Separation and Purification Technology</i> , 2022 , 281, 119976	8.3	3
311	Growth mechanism of Al-Ti-O inclusions in steelmaking process. <i>Metallurgical Research and Technology</i> , 2022 , 119, 209	0.9	1
310	Understanding the relationship between slag crystallization behaviour and electrical conductivity under isothermal conditions for online slag solidification monitoring in slag recycling. <i>Resources, Conservation and Recycling</i> , 2022 , 182, 106319	11.9	O
309	H2-Based Processes for Fe and Al Recovery from Bauxite Residue (Red Mud): Comparing the Options. <i>Materials Proceedings</i> , 2021 , 5, 45	0.3	0
308	Characterization of antimony-containing metallurgical residues for antimony recovery. <i>Journal of Cleaner Production</i> , 2021 , 327, 129491	10.3	3
307	Kinetic Aspects of Aluminum Oxide Dissolution in Molten BOF Slag. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2021 , 52, 1614-1625	2.5	O
306	Determination of the Fe3+/({varvec{Sigma}})Fe Ratio in Synthetic Lead Silicate Slags Using X-Band CW-EPR. <i>Journal of Sustainable Metallurgy</i> , 2021 , 7, 519-536	2.7	1
305	On the CO Desorption and Absorption in Liquid Low-carbon Steel. ISIJ International, 2021, 61, 1357-136	521.7	3
304	Thermodynamic Analysis of Copper Smelting, Considering the Impact of Minor Elements Behavior on Slag Application Options and Cu Recovery. <i>Journal of Sustainable Metallurgy</i> , 2021 , 7, 664-683	2.7	3
303	In Situ Electrical Conductivity Measurement by Using Confocal Scanning Laser Microscopy. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021 , 52, 2563	2.5	2
302	CO Desorption and Absorption in Molten Steel: A Review. ISIJ International, 2021, 61, 1337-1347	1.7	1
301	A First-Principles Tool to Discover New Pyrometallurgical Refining Options. <i>Jom</i> , 2021 , 73, 2900-2910	2.1	0
300	Mathematical Methodology and Metallurgical Application of Turbulence Modelling: A Review. <i>Metals</i> , 2021 , 11, 1297	2.3	2

299	Inertial Force on Floating Inclusion Particles at the Interface of Liquid Steel and Inert Gas. <i>ISIJ International</i> , 2021 , 61, 2400-2409	1.7	3
298	Quantification of the Fe3+ concentration in lead silicate glasses using X-band CW-EPR. <i>Journal of Non-Crystalline Solids</i> , 2020 , 536, 120002	3.9	6
297	Mixing Characteristics of Additives in Viscous Liquid BOF Slag. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2020 , 51, 2147-2158	2.5	O
296	Laser-induced breakdown spectroscopy analysis of the free surface of liquid secondary copper slag. <i>Spectrochimica Acta, Part B: Atomic Spectroscopy</i> , 2020 , 170, 105921	3.1	2
295	The Impact of Sample Homogeneity, Crucible Material, and Oxygen Partial Pressure on the Crystallization of Fe-Rich Oxidic Slag in CLSM Experiments. <i>Journal of Sustainable Metallurgy</i> , 2020 , 6, 216-226	2.7	5
294	Investigations on Crystallization Processes of Three Oxidic Gasifier Slag Systems. <i>Journal of Energy Resources Technology, Transactions of the ASME</i> , 2020 , 142,	2.6	4
293	A Dynamic Model of a Submerged Plasma Slag Fuming Process. <i>Minerals, Metals and Materials Series</i> , 2020 , 237-245	0.3	3
292	Selective Roasting of NdHe-B Permanent Magnets as a Pretreatment Step for Intensified Leaching with an Ionic Liquid. <i>Journal of Sustainable Metallurgy</i> , 2020 , 6, 91-102	2.7	9
291	An integrated process for iron recovery and binder production from bauxite residue (red mud). <i>Materials Letters</i> , 2020 , 264, 127273	3.3	1
290	Modelling of gas injection into a viscous liquid through a top-submerged lance. <i>Chemical Engineering Science</i> , 2020 , 212, 115359	4.4	8
289	Experimental investigation of the phase relations in the SiO2-Dy2O3-CaO ternary system. <i>Ceramics International</i> , 2020 , 46, 23534-23543	5.1	2
288	Chlorine Addition to Existing Zinc Fuming Processes: A Thermodynamic Study. <i>Journal of Sustainable Metallurgy</i> , 2019 , 5, 538-550	2.7	1
287	Simulation of particle migration during viscosity measurement of solid-bearing slag using a spindle rotational type viscometer. <i>Chemical Engineering Science</i> , 2019 , 207, 172-180	4.4	2
286	Experimental Study on the Viscosity of Stainless Steelmaking Slags. <i>ISIJ International</i> , 2019 , 59, 404-411	1.7	6
285	Alkali-activation of CaO-FeOx-SiO2 slag: Formation mechanism from in-situ X-ray total scattering. <i>Cement and Concrete Research</i> , 2019 , 122, 179-188	10.3	25
284	Influence of Al2O3 Level in CaO-SiO2-MgO-Al2O3 Refining Slags on Slag/Magnesia-Doloma Refractory Interactions. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2019 , 50, 1822-1829	2.5	3
283	Dissolution Behavior and Phase Evolution During Aluminum Oxide Dissolution in BOF Slag. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 1782-1790	2.5	3
282	Experimental and Mathematical Simulation Study on the Granulation of a Modified Basic Oxygen Furnace Steel Slag. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2019 , 50, 1260-1268	2.5	2

281	Experimental Investigation on Metallic Droplet Behavior in Molten BOF Slag. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2019 , 50, 2354-2361	2.5	2
2 80	The influence of air and temperature on the reaction mechanism and molecular structure of Fe-silicate inorganic polymers. <i>Journal of Non-Crystalline Solids</i> , 2019 , 526, 119675	3.9	10
279	Inorganic Polymers From CaO-FeOx-SiO2 Slag: The Start of Oxidation of Fe and the Formation of a Mixed Valence Binder. <i>Frontiers in Materials</i> , 2019 , 6,	4	18
278	Recovery of Rare Earths from Bauxite Residue (Red Mud). World Scientific Series in Current Energy Issues, 2019 , 343-356	0.2	2
277	Effect of Al2O3 Addition on Mineralogical Modification and Crystallization Kinetics of a High Basicity BOF Steel Slag. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2019 , 50, 271-281	2.5	5
276	Modifications of basic-oxygen-furnace slag microstructure and their effect on the rheology and the strength of alkali-activated binders. <i>Cement and Concrete Composites</i> , 2019 , 97, 143-153	8.6	10
275	Optimization of Mineralogy and Microstructure of Solidified Basic Oxygen Furnace Slag Through SiO2 Addition or Atmosphere Control During Hot-Stage Slag Treatment. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2019 , 50, 210-218	2.5	3
274	Evaluating the material resource efficiency of secondary aluminium production: A Monte Carlo-based decision-support tool. <i>Journal of Cleaner Production</i> , 2019 , 215, 488-496	10.3	9
273	Densification mechanism of porous alumina plugs by molten steel with different oxygen levels. Journal of the European Ceramic Society, 2018 , 38, 2662-2670	6	11
272	Assessment of Gas-Slag-Metal Interaction During a Converter Steelmaking Process. <i>Minerals, Metals and Materials Series</i> , 2018 , 353-364	0.3	O
271	Quantitative Study on Dissolution Behavior of NdO in Fluoride Melts. <i>Industrial & amp; Engineering Chemistry Research</i> , 2018 , 57, 1380-1388	3.9	11
270	Non-Newtonian behavior of solid-bearing silicate melts: An experimental study. <i>Journal of Non-Crystalline Solids</i> , 2018 , 493, 65-72	3.9	10
269	Modes of occurrences of scandium in Greek bauxite and bauxite residue. <i>Minerals Engineering</i> , 2018 , 123, 35-48	4.9	57
268	Degradation mechanisms of alumina-chromia refractories for secondary copper smelter linings. <i>Corrosion Science</i> , 2018 , 136, 409-417	6.8	20
267	Mix-design Parameters and Real-life Considerations in the Pursuit of Lower Environmental Impact Inorganic Polymers. <i>Waste and Biomass Valorization</i> , 2018 , 9, 879-889	3.2	32
266	Rheological Transitions of the Solid-Bearing Slag During Cooling Process. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2018 , 49, 2649-2657	2.5	4
265	Molecular structure of CaOffeOxBiO2 glassy slags and resultant inorganic polymer binders. Journal of the American Ceramic Society, 2018 , 101, 5846-5857	3.8	32
264	Aluminum Deoxidation Equilibrium of Fe-Ni Alloy at 1773 K and 1873 K. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2018 , 49, 2389-2399	2.5	5

263	Rare Earth Element Phases in Bauxite Residue. Minerals (Basel, Switzerland), 2018, 8, 77	2.4	39
262	Theoretical Prediction and Synthesis of (CrZr)AlC i-MAX Phase. <i>Inorganic Chemistry</i> , 2018 , 57, 6237-6244	15.1	33
261	Numerical Modeling of Liquidliquid Mass Transfer and the Influence of Mixing in Gas-Stirred Ladles. <i>Jom</i> , 2018 , 70, 2109-2118	2.1	17
260	Hydrodynamics study of bubbly flow in a top-submerged lance vessel. <i>Chemical Engineering Science</i> , 2018 , 192, 1091-1104	4.4	14
259	Viscosity of Heterogeneous Silicate Melts: A Review. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2018 , 49, 2469-2486	2.5	19
258	Quantification of uncertainty in thermodynamic predictions for vacuum refining of liquid Ag B b and Au B b binary alloys. <i>Vacuum</i> , 2018 , 155, 398-402	3.7	
257	In-situ Observation of the Precipitation Behavior of a Dy2O3 Containing Slag System. <i>Minerals, Metals and Materials Series,</i> 2018 , 323-328	0.3	
256	Effect of Crystallization on the Abrupt Viscosity Increase during the Slag Cooling Process. <i>ISIJ International</i> , 2018 , 58, 1972-1978	1.7	13
255	Recovery of Rare Earths and Major Metals from Bauxite Residue (Red Mud) by Alkali Roasting, Smelting, and Leaching. <i>Journal of Sustainable Metallurgy</i> , 2017 , 3, 393-404	2.7	46
254	Study of the Effect of Spinel Composition on Metallic Copper Losses in Slags. <i>Journal of Sustainable Metallurgy</i> , 2017 , 3, 416-427	2.7	13
253	Valorization of BOF Steel Slag by Reduction and Phase Modification: Metal Recovery and Slag Valorization. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2017 , 48, 1602-1612	2.5	22
252	Transforming Enhanced Landfill Mining Derived Gasification/Vitrification Glass into Low-Carbon Inorganic Polymer Binders and Building Products. <i>Journal of Sustainable Metallurgy</i> , 2017 , 3, 405-415	2.7	22
251	CSLM study on the interaction of Nd2O3 with CaCl2 and CaF2IIF molten melts. <i>Journal of Materials Science</i> , 2017 , 52, 1717-1726	4.3	8
250	Investigation of Origin of Attached Cu-Ag Droplets to Solid Particles During High-Temperature Slag/Copper/Spinel Interactions. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2017 , 48, 3058-3073	2.5	9
249	Extraction of neodymium by direct reduction of NdOCl in molten calcium chloride. <i>Electrochimica Acta</i> , 2017 , 257, 465-472	6.7	10
248	Viscosity of Heterogeneous Silicate Melts: Assessment of the Measured Data and Modeling. <i>ISIJ International</i> , 2017 , 57, 1895-1901	1.7	11
247	Investigation of Reactive Origin for Attachment of Cu Droplets to Solid Particles. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2017 , 48, 2459-2468	2.5	5
246	Effect of Surfactant Te on the Formation of MnS Inclusions in Steel. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2017 , 48, 2447-2458	2.5	17

245	Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2017 , 48, 3027-3037	2.5	6
244	Comparative oxidation behavior of Nd-Fe-B magnets for potential recycling methods: Effect of hydrogenation pre-treatment and magnet composition. <i>Journal of Alloys and Compounds</i> , 2017 , 728, 727-738	5.7	4
243	Metal Recovery from BOF Steel Slag by Carbo-thermic Reduction. <i>BHM-Zeitschrift Fuer Rohstoffe Geotechnik Metallurgie Werkstoffe Maschinen-Und Anlagentechnik</i> , 2017 , 162, 258-262	0.6	1
242	Characterization of landfilled stainless steel slags in view of metal recovery. <i>Frontiers of Chemical Science and Engineering</i> , 2017 , 11, 353-362	4.5	7
241	Utilization of Stainless-steel Furnace Dust as an Admixture for Synthesis of Cement-based Electromagnetic Interference Shielding Composites. <i>Scientific Reports</i> , 2017 , 7, 15368	4.9	14
240	Hydrometallurgical recycling of NdFeB magnets: Complete leaching, iron removal and electrolysis. <i>Journal of Rare Earths</i> , 2017 , 35, 574-584	3.7	49
239	Recycling of NdFeB magnets using nitration, calcination and water leaching for REE recovery. <i>Hydrometallurgy</i> , 2017 , 167, 115-123	4	43
238	The Chemical Stability and Electrochemical Behavior of Dy2O3 in Molten CaCl2. <i>Minerals, Metals and Materials Series</i> , 2017 , 23-30	0.3	
237	Smelting of Bauxite Residue (Red Mud) in View of Iron and Selective Rare Earths Recovery. <i>Journal of Sustainable Metallurgy</i> , 2016 , 2, 28-37	2.7	94
236	Ladle metallurgy stainless steel slag as a raw material in Ordinary Portland Cement production: a possibility for industrial symbiosis. <i>Journal of Cleaner Production</i> , 2016 , 112, 872-881	10.3	49
235	Freeze-Lining Formation from Fayalite-Based Slags 2016 , 245-251		
234	Sessile drop evaluation of high temperature copper/spinel and slag/spinel interactions. <i>Transactions of Nonferrous Metals Society of China</i> , 2016 , 26, 2770-2783	3.3	9
233	A Proposal for a 100 % Use of Bauxite Residue Towards Inorganic Polymer Mortar. <i>Journal of Sustainable Metallurgy</i> , 2016 , 2, 394-404	2.7	39
232	Effect of surfactant Te on the behavior of alumina inclusions at advancing solid-liquid interfaces of liquid steel. <i>Acta Materialia</i> , 2016 , 120, 443-452	8.4	5
231	Comparative Analysis of Processes for Recovery of Rare Earths from Bauxite Residue. <i>Jom</i> , 2016 , 68, 2958-2962	2.1	15
230	Composition Modification of ZnO Containing Fayalite Slag from Secondary Source Copper Smelting 2016 , 583-589		1
229	Study of Phase Relations of ZnO-Containing Fayalite Slag Under Fe Saturation. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2016 , 47, 2820-2829	2.5	3
228	Phase Relations of the CaO-SiO2-Nd2O3 System and the Implication for Rare Earths Recycling. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016	2.5	9

227	Crystal structure of apatite type Ca2.49Nd7.51(SiO4)6O1.75. <i>Acta Crystallographica Section E: Crystallographic Communications</i> , 2016 , 72, 209-11	0.7	2
226	Origin and sedimentation of Cu-droplets sticking to spinel solids in pyrometallurgical slags. <i>Materials Science and Technology</i> , 2016 , 32, 1911-1924	1.5	23
225	Effect of ZnO level in secondary copper smelting slags on slag/magnesia-chromite refractory interactions. <i>Journal of the European Ceramic Society</i> , 2016 , 36, 1821-1828	6	17
224	Identification of magnesialhromite refractory degradation mechanisms of secondary copper smelter linings. <i>Journal of the European Ceramic Society</i> , 2016 , 36, 2119-2132	6	31
223	Comparison of the chemical corrosion resistance of magnesia-based refractories by stainless steelmaking slags under vacuum conditions. <i>Ceramics International</i> , 2016 , 42, 743-751	5.1	16
222	Effect of Basicity on Basic Oxygen Furnace (BOF) Slag Solidification Microstructure and Mineralogy 2016 , 1185-1190		3
221	In-Situ Observation of Rare Earth Containing Precipitated Phase Crystallization and Solidification of CaO-SiO2-Nd2O3 and CaO-SiO2-Nd2O3-P2O5 Melts 2016 , 221-227		1
220	Rheological Behavior of Fayalite Based Secondary Copper Smelter Slag in Iron Saturation 2016 , 1301-1	308	2
219	Viscosity of Partially Crystallized BOF Slag 2016 , 263-269		
218	Fundamental Study of the Rare Earths Recycling Through the Pyrotetallurgical Route P hase Relations and Crystallization Behavior of the CaO-SiO2-Nd2O3 System 2016 , 95-100		
218			
	Relations and Crystallization Behavior of the CaO-SiO2-Nd2O3 System 2016 , 95-100	1.7	24
217	Relations and Crystallization Behavior of the CaO-SiO2-Nd2O3 System 2016 , 95-100 Freeze-Lining Formation from Fayalite-Based Slags 2016 , 245-251 Effect of Alumina Morphology on the Clustering of Alumina Inclusions in Molten Iron. <i>ISIJ</i>	1.7	24
217	Relations and Crystallization Behavior of the CaO-SiO2-Nd2O3 System 2016, 95-100 Freeze-Lining Formation from Fayalite-Based Slags 2016, 245-251 Effect of Alumina Morphology on the Clustering of Alumina Inclusions in Molten Iron. ISIJ International, 2016, 56, 926-935 Effect of Impurity Te on the Morphology of Alumina Particles in Molten Iron. ISIJ International, 2016	<u> </u>	
217 216 215	Relations and Crystallization Behavior of the CaO-SiO2-Nd2O3 System 2016, 95-100 Freeze-Lining Formation from Fayalite-Based Slags 2016, 245-251 Effect of Alumina Morphology on the Clustering of Alumina Inclusions in Molten Iron. ISIJ International, 2016, 56, 926-935 Effect of Impurity Te on the Morphology of Alumina Particles in Molten Iron. ISIJ International, 2016, 56, 1529-1536 Effect of Basicity on Basic Oxygen Furnace (BOF) Slag Solidification Microstructure and Mineralogy	<u> </u>	
217 216 215	Relations and Crystallization Behavior of the CaO-SiO2-Nd2O3 System 2016, 95-100 Freeze-Lining Formation from Fayalite-Based Slags 2016, 245-251 Effect of Alumina Morphology on the Clustering of Alumina Inclusions in Molten Iron. ISIJ International, 2016, 56, 926-935 Effect of Impurity Te on the Morphology of Alumina Particles in Molten Iron. ISIJ International, 2016, 56, 1529-1536 Effect of Basicity on Basic Oxygen Furnace (BOF) Slag Solidification Microstructure and Mineralogy 2016, 1185-1190	<u> </u>	
217 216 215 214 213	Relations and Crystallization Behavior of the CaO-SiO2-Nd2O3 System 2016, 95-100 Freeze-Lining Formation from Fayalite-Based Slags 2016, 245-251 Effect of Alumina Morphology on the Clustering of Alumina Inclusions in Molten Iron. ISIJ International, 2016, 56, 926-935 Effect of Impurity Te on the Morphology of Alumina Particles in Molten Iron. ISIJ International, 2016, 56, 1529-1536 Effect of Basicity on Basic Oxygen Furnace (BOF) Slag Solidification Microstructure and Mineralogy 2016, 1185-1190 Treatment Of Molten Steel Slag for Cement Application 2016, 157-164	<u> </u>	2

209	Stabilization of Free Lime in BOF Slag by Melting and Solidification in Air. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2016 , 47, 3237-3240	2.5	11
208	Rheological Behavior of Fayalite Based Secondary Copper Smelter Slag in Iron Saturation 2016 , 1301-1	308	
207	Effect of Al2O3 and SiO2 Addition on the Viscosity of BOF Slag 2016 , 439-446		
206	In-Situ Observation of Rare Earth Containing Precipitated Phase Crystallization and Solidification of CaO-SiO2-Nd2O3 and CaO-SiO2-Nd2O3-P2O5 Melts 2016 , 219-227		
205	Effect of Al2O3 and SiO2 Addition on the Viscosity of BOF Slag 2016 , 439-446		3
204	Selective recovery of rare earths from bauxite residue by combination of sulfation, roasting and leaching. <i>Minerals Engineering</i> , 2016 , 92, 151-159	4.9	109
203	Degradation mechanisms of aluminalilica runner refractories by carbon steel during ingot casting process. <i>Ceramics International</i> , 2016 , 42, 10209-10214	5.1	12
202	Investigation of High-Temperature Slag/Copper/Spinel Interactions. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2016 , 47, 3421-3434	2.5	15
201	Thermodynamic assessment of the Nd2O3-CaO-SiO2 ternary system. <i>Calphad: Computer Coupling of Phase Diagrams and Thermochemistry</i> , 2016 , 55, 157-164	1.9	3
200	Spinel saturation of a PbO based slag as a method to mitigate the chemical degradation of magnesia-chromite bricks. <i>Journal of the European Ceramic Society</i> , 2016 , 36, 4291-4299	6	1
199	Effects of Structure on the Thermodynamic and Transport Properties of Na2O-CaO-SiO2-FeO-Fe2O3 Melts 2016 , 511-518		
198	Recovery of Rare Earths and Other Valuable Metals From Bauxite Residue (Red Mud): A Review. <i>Journal of Sustainable Metallurgy</i> , 2016 , 2, 365-386	2.7	149
197	Towards zero-waste valorisation of rare-earth-containing industrial process residues: a critical review. <i>Journal of Cleaner Production</i> , 2015 , 99, 17-38	10.3	349
196	The effect of a temperature gradient on the phase formation inside a magnesiadhromite refractory in contact with a non-ferrous PbOBiO2MgO slag. <i>Journal of the European Ceramic Society</i> , 2015 , 35, 2933-2942	6	9
195	Gas-solid reaction kinetics of ZnFe2O4 formation from 907 to 1100 °C. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 4718-22	2.8	4
194	The influence of ZnO in fayalite slag on the degradation of magnesia-chromite refractories during secondary Cu smelting. <i>Journal of the European Ceramic Society</i> , 2015 , 35, 2641-2650	6	25
193	Observing Nitrogen Bubbles in Liquid Zinc in a Vertical Hele-Shaw Cell. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2015 , 46, 621-634	2.5	2
192	Steel Reoxidation by Gunning Mass and Tundish Slag. <i>Metallurgical and Materials Transactions B:</i> Process Metallurgy and Materials Processing Science, 2015 , 46, 1242-1251	2.5	14

(2014-2015)

191	Early Age Microstructural Transformations of an Inorganic Polymer Made of Fayalite Slag. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 2269-2277	3.8	35	
190	Recycling of NdFeB Magnets Using Sulfation, Selective Roasting, and Water Leaching. <i>Journal of Sustainable Metallurgy</i> , 2015 , 1, 199-215	2.7	81	
189	Numerical simulation on magnetic assembled structures of iron-based metallic particles within MMCs by a homogeneous strong magnetic field. <i>Journal Physics D: Applied Physics</i> , 2015 , 48, 365501	3	3	
188	Compatibility Issues of Yttria-Stabilized Zirconia Solid Oxide Membrane in the Direct Electro-Deoxidation of Metal Oxides. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 972-981	3.8	5	
187	Low temperature synthesis of forsterite from hydromagnesite and fumed silica mixture. <i>Ceramics International</i> , 2015 , 41, 2234-2239	5.1	29	
186	The influence of slag compositional changes on the chemical degradation of magnesia-chromite refractories exposed to PbO-based non-ferrous slag saturated in spinel. <i>Journal of the European Ceramic Society</i> , 2015 , 35, 347-355	6	16	
185	Zn Loss into ZnFe2O4 in an Open Type Electric Arc Furnace: An In-Process Separation Performance Model. <i>Journal of Sustainable Metallurgy</i> , 2015 , 1, 297-303	2.7	1	
184	Alkali Activation of AOD Stainless Steel Slag Under Steam Curing Conditions. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 3062-3074	3.8	11	
183	Effect of Interfacial Properties on the Characteristics and Clustering of Alumina Inclusions in Molten Iron. <i>ISIJ International</i> , 2015 , 55, 1891-1900	1.7	9	
182	Interfacial Reaction and Inclusion Formation at Early Stages of FeMnSi Addition to Liquid Fe. <i>ISIJ International</i> , 2015 , 55, 1661-1668	1.7	4	
181	In-situ Investigation on the Reduction of Magnesiochromite with Ferrosilicon between 1373¶573 K. <i>ISIJ International</i> , 2015 , 55, 2289-2296	1.7	2	
180	Wetting behaviour of Cu based alloys on spinel substrates in pyrometallurgical context. <i>Materials Science and Technology</i> , 2015 , 31, 1925-1933	1.5	17	
179	Formation of the ZnFe2O4 phase in an electric arc furnace off-gas treatment system. <i>Journal of Hazardous Materials</i> , 2015 , 287, 180-7	12.8	23	
178	Cementitious binders from activated stainless steel refining slag and the effect of alkali solutions. <i>Journal of Hazardous Materials</i> , 2015 , 286, 211-9	12.8	48	
177	Inorganic Polymer Cement from Fe-Silicate Glasses: Varying the Activating Solution to Glass Ratio. <i>Waste and Biomass Valorization</i> , 2014 , 5, 411-428	3.2	34	
176	Degradation mechanisms and use of refractory linings in copper production processes: A critical review. <i>Journal of the European Ceramic Society</i> , 2014 , 34, 849-876	6	93	
175	The effect of phase formation during use on the chemical corrosion of magnesialthromite refractories in contact with a non-ferrous PbOBiO2 based slag. <i>Journal of the European Ceramic Society</i> , 2014 , 34, 1599-1610	6	27	
174	In Situ Observation on Lime Dissolution in Molten Metallurgical Slags [Kinetic Aspects. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 6325-6333	3.9	16	

173	Effect of curing temperatures on the alkali activation of crystalline continuous casting stainless steel slag. <i>Construction and Building Materials</i> , 2014 , 71, 308-316	6.7	38
172	In Situ Observation of the Formation and Interaction Behavior of the Oxide/Oxysulfide Inclusions on a Liquid Iron Surface. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2014 , 45, 903-913	2.5	11
171	Comparison of electric arc furnace dust treatment technologies using exergy efficiency. <i>Journal of Cleaner Production</i> , 2014 , 65, 152-167	10.3	61
170	Effect of accelerated carbonation on AOD stainless steel slag for its valorisation as a CO2-sequestering construction material. <i>Chemical Engineering Journal</i> , 2014 , 246, 39-52	14.7	104
169	Interfacial Reactions at Early Stages of Mn Addition to Liquid Fe. ISIJ International, 2014, 54, 1209-1217	1.7	4
168	Desulphurisation and Inclusion Behaviour of Stainless Steel Refining by Using CaOAl2O3 Based Slag at Low Sulphur Levels. <i>ISIJ International</i> , 2014 , 54, 72-81	1.7	15
167	Sulphide Capacity and Mineralogy of BaO and B2O3 Modified CaOAl2O3 Top Slag. <i>ISIJ International</i> , 2014 , 54, 1570-1577	1.7	5
166	Interaction between Steel and Distinct Gunning Materials in the Tundish. <i>ISIJ International</i> , 2014 , 54, 2551-2558	1.7	13
165	Experimental and numerical study of buoyancy-driven single bubble dynamics in a vertical Hele-Shaw cell. <i>Physics of Fluids</i> , 2014 , 26, 123303	4.4	22
164	Lead Recycling 2014 , 95-111		6
164	Lead Recycling 2014, 95-111 Synthesis of Inorganic Polymers Using a CaO-Al2O3-FeO-SiO2 Slag. Advances in Science and Technology, 2014, 92, 32-37	0.1	1
	Synthesis of Inorganic Polymers Using a CaO-Al2O3-FeO-SiO2 Slag. <i>Advances in Science and</i>	0.1	
163	Synthesis of Inorganic Polymers Using a CaO-Al2O3-FeO-SiO2 Slag. <i>Advances in Science and Technology</i> , 2014 , 92, 32-37 Hydraulic Behavior of Mechanically and Chemically Activated Synthetic Merwinite. <i>Journal of the</i>		1
163 162	Synthesis of Inorganic Polymers Using a CaO-Al2O3-FeO-SiO2 Slag. <i>Advances in Science and Technology</i> , 2014 , 92, 32-37 Hydraulic Behavior of Mechanically and Chemically Activated Synthetic Merwinite. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 3973-3981 From NdFeB magnets towards the rare-earth oxides: a recycling process consuming only oxalic acid.	3.8	1
163 162 161	Synthesis of Inorganic Polymers Using a CaO-Al2O3-FeO-SiO2 Slag. <i>Advances in Science and Technology</i> , 2014 , 92, 32-37 Hydraulic Behavior of Mechanically and Chemically Activated Synthetic Merwinite. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 3973-3981 From NdFeB magnets towards the rare-earth oxides: a recycling process consuming only oxalic acid. <i>RSC Advances</i> , 2014 , 4, 64099-64111 Investigating the binding potential of continuous casting stainless steel slag by alkali activation.	3.8	1 10 112
163 162 161 160	Synthesis of Inorganic Polymers Using a CaO-Al2O3-FeO-SiO2 Slag. <i>Advances in Science and Technology</i> , 2014 , 92, 32-37 Hydraulic Behavior of Mechanically and Chemically Activated Synthetic Merwinite. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 3973-3981 From NdFeB magnets towards the rare-earth oxides: a recycling process consuming only oxalic acid. <i>RSC Advances</i> , 2014 , 4, 64099-64111 Investigating the binding potential of continuous casting stainless steel slag by alkali activation. <i>Advances in Cement Research</i> , 2014 , 26, 256-270 Influence of mechanical and chemical activation on the hydraulic properties of gamma dicalcium	3.8 3.7 1.8	1 10 112
163162161160159	Synthesis of Inorganic Polymers Using a CaO-Al2O3-FeO-SiO2 Slag. <i>Advances in Science and Technology</i> , 2014 , 92, 32-37 Hydraulic Behavior of Mechanically and Chemically Activated Synthetic Merwinite. <i>Journal of the American Ceramic Society</i> , 2014 , 97, 3973-3981 From NdFeB magnets towards the rare-earth oxides: a recycling process consuming only oxalic acid. <i>RSC Advances</i> , 2014 , 4, 64099-64111 Investigating the binding potential of continuous casting stainless steel slag by alkali activation. <i>Advances in Cement Research</i> , 2014 , 26, 256-270 Influence of mechanical and chemical activation on the hydraulic properties of gamma dicalcium silicate. <i>Cement and Concrete Research</i> , 2014 , 55, 59-68	3.8 3.7 1.8	1 10 112 7 49

155	Experimental Evaluation of the Dissolution Rates of Ti and FeTi70 in Liquid Fe. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2013 , 44, 561-570	2.5	7
154	Phase evolution and nature of oxide dissolution in metallurgical slags. <i>AICHE Journal</i> , 2013 , 59, 2907-29	1 36 6	9
153	Recycling of rare earths: a critical review. <i>Journal of Cleaner Production</i> , 2013 , 51, 1-22	10.3	1360
152	Slags with a high Al and Fe content as precursors for inorganic polymers. <i>Applied Clay Science</i> , 2013 , 73, 93-102	5.2	71
151	Alignment of weakly magnetic metals during solidification in a strong magnetic field. <i>Journal of Alloys and Compounds</i> , 2013 , 551, 568-577	5.7	17
150	Processing of non-ferromagnetic materials in strong static magnetic field. <i>Current Opinion in Solid State and Materials Science</i> , 2013 , 17, 193-201	12	15
149	Enhanced Landfill Mining in view of multiple resource recovery: a critical review. <i>Journal of Cleaner Production</i> , 2013 , 55, 45-55	10.3	224
148	On a new hydraulic binder from stainless steel converter slag. <i>Advances in Cement Research</i> , 2013 , 25, 21-31	1.8	8
147	A Quantitative Model for Slag Yard Cooling. <i>ISIJ International</i> , 2013 , 53, 1106-1111	1.7	6
146	Desulphurisation of Stainless Steel by Using CaO^ ^ndash;Al2O3 Based Slags during Secondary Metallurgy. <i>ISIJ International</i> , 2013 , 53, 459-467	1.7	27
145	Evolution of Non-Metallic Inclusions in Secondary Steelmaking: Learning from Inclusion Size Distributions. <i>ISIJ International</i> , 2013 , 53, 1974-1982	1.7	31
144	Inclusion Formation and Interfacial Reactions between FeTi Alloys and Liquid Steel at an Early Stage. <i>ISIJ International</i> , 2013 , 53, 629-638	1.7	15
143	VALORISATION OF STAINLESS STEEL SLAGS AS A HYDRAULIC BINDER. <i>Acta Metallurgica Slovaca</i> , 2013 , 19, 176-183	2.1	2
142	CHAPTER 2. Integration of Traditional Methods for Elemental Recovery in a Zero-waste Recycling Flow Sheet. <i>RSC Green Chemistry</i> , 2013 , 29-58	0.9	
141	Mechanisms of Calcium Oxide Dissolution in CaO-Al2O3-SiO2-Based Slags 2013 , 101-107		2
140	Strong magnetic field effects on solid-liquid and particle-particle interactions during the processing of a conducting liquid containing non-conducting particles. <i>Journal of Colloid and Interface Science</i> , 2012 , 375, 203-12	9.3	8
139	Strong static magnetic field processing of metallic materials: A review. <i>Current Opinion in Solid State and Materials Science</i> , 2012 , 16, 254-267	12	53
138	Degradation behavior of stainless steel in PbOtaOBiO2 slag in the presence of sulphur. <i>Corrosion Science</i> , 2012 , 54, 291-298	6.8	1

137	Influence of Cr and Ni content in stainless steel on the degradation mechanisms in PbOtaoBiO2 slag. <i>Corrosion Science</i> , 2012 , 57, 1-10	6.8	3
136	Stabilization of basic oxygen furnace slag by hot-stage carbonation treatment. <i>Chemical Engineering Journal</i> , 2012 , 203, 239-250	14.7	96
135	Influence of As2O3 added to PbOfaOBiO2 slag on the degradation mechanisms of stainless steel. <i>Corrosion Science</i> , 2012 , 65, 259-267	6.8	1
134	Strong Magnetic Field Effect on Surface Tension Associated with an Interfacial Magnetic Pressure. Journal of Physical Chemistry C, 2012 , 116, 17676-17681	3.8	25
133	Effect of mechanical activation on the hydraulic properties of stainless steel slags. <i>Cement and Concrete Research</i> , 2012 , 42, 778-788	10.3	103
132	Influence of ferroalloy impurities and ferroalloy addition sequence on ultra low carbon (ULC) steel cleanliness after RH treatment. <i>Ironmaking and Steelmaking</i> , 2012 , 39, 519-529	1.3	14
131	Phase field modeling of the crystallization of FeOxBiO2 melts in contact with an oxygen-containing atmosphere. <i>Chemical Geology</i> , 2011 , 290, 156-162	4.2	7
130	Bounding box framework for efficient phase field simulation of grain growth in anisotropic systems. <i>Computational Materials Science</i> , 2011 , 50, 2221-2231	3.2	13
129	An optimized diffusion database for the disordered and ordered bcc phases in the binary FeIIi system. <i>Calphad: Computer Coupling of Phase Diagrams and Thermochemistry</i> , 2011 , 35, 518-522	1.9	9
128	Fe3Nb3N precipitates of the Fe3W3C type in Nb stabilized ferritic stainless steel. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 9583-9588	5.7	8
127	Formation and Morphology of Al2O3 Inclusions at the Onset of Liquid Fe Deoxidation by Al Addition. <i>ISIJ International</i> , 2011 , 51, 27-34	1.7	36
126	Determination of Steel Cleanliness in Ultra Low Carbon Steel by Pulse Discrimination Analysis-Optical Emission Spectroscopy Technique. <i>ISIJ International</i> , 2011 , 51, 1778-1787	1.7	11
125	Laboratory study on the formation of Al2O3 inclusions at the on-set of deoxidation and during reoxidation. <i>Frontiers of Materials Science</i> , 2011 , 5, 69-76	2.5	6
124	A phase field model for isothermal crystallization of oxide melts. <i>Acta Materialia</i> , 2011 , 59, 2156-2165	8.4	33
123	Phase-field analysis of a ternary two-phase diffusion couple with multiple analytical solutions. <i>Acta Materialia</i> , 2011 , 59, 3946-3954	8.4	10
122	An implicit conservative scheme for coupled heat and mass transfer problems with multiple moving interfaces. <i>International Journal of Heat and Mass Transfer</i> , 2011 , 54, 1039-1045	4.9	8
121	Analysis of the isothermal crystallization of CaSiO3 in a CaOAl2O3BiO2 melt through in situ observations. <i>Journal of the European Ceramic Society</i> , 2011 , 31, 1873-1879	6	16
120	Strong magnetic field-induced segregation and alignment of nonmagnetic particles. <i>Journal of Applied Physics</i> , 2011 , 109, 07E301	2.5	4

119	STRONG MAGNETIC FIELD INDUCED SEGREGATION AND SELF-ASSEMBLY OF MICROMETER SIZED NON-MAGNETIC PARTICLES. <i>Progress in Electromagnetics Research B</i> , 2010 , 23, 199-214	0.7	4	
118	MAGNETIC INTERACTION BETWEEN TWO NON-MAGNETIC PARTICLES MIGRATING IN A CONDUCTIVE FLUID INDUCED BY A STRONG MAGNETIC FIELD-AN ANALYTICAL APPROACH. Progress in Electromagnetics Research, 2010, 103, 1-16	3.8	9	
117	Non-magnetic anisotropic-materials preparation by a strong magnetic field during the solidification of a hypereutectic Al-Cu alloy. <i>Europhysics Letters</i> , 2010 , 89, 64002	1.6	8	
116	Theoretical evaluation of influence of convective heat transfer and original sample size on shell melting time during Ti dissolution in secondary steelmaking. <i>Ironmaking and Steelmaking</i> , 2010 , 37, 510	6- 5 21	6	
115	Ferroalloy quality and steel cleanliness. <i>Ironmaking and Steelmaking</i> , 2010 , 37, 502-511	1.3	23	
114	Morphology of Al2O3 inclusions formed at Fe/FeAl interface. <i>Ironmaking and Steelmaking</i> , 2010 , 37, 496-501	1.3	4	
113	Clean metal technology. <i>Ironmaking and Steelmaking</i> , 2010 , 37, 473-474	1.3		
112	Pinning effect of spheroid second-phase particles on grain growth studied by three-dimensional phase-field simulations. <i>Computational Materials Science</i> , 2010 , 49, 340-350	3.2	70	
111	Precipitation in Fell5CrllNb alloys after oxygenation. Acta Materialia, 2010, 58, 3832-3841	8.4	4	
110	Exergy-Based Efficiency Analysis of Pyrometallurgical Processes. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2010 , 41, 1205-1219	2.5	12	
109	Fabrication of high quality Ge virtual substrates by selective epitaxial growth in shallow trench isolated Si (001) trenches. <i>Thin Solid Films</i> , 2010 , 518, 2538-2541	2.2	20	
108	Interfacial Reaction between Refractory Materials and Metallurgical Slags containing Fluoride. <i>Steel Research International</i> , 2010 , 81, 860-868	1.6	40	
107	Interfacial Reactions between Oxygen Containing Fe and Al at the Onset of Liquid Fe Deoxidation by Al Addition. <i>ISIJ International</i> , 2010 , 50, 1552-1559	1.7	12	
106	NUMERICAL CALCULATIONS ON INCLUSION REMOVAL FROM LIQUID METALS UNDER STRONG MAGNETIC FIELDS. <i>Progress in Electromagnetics Research</i> , 2009 , 98, 359-373	3.8	13	
105	A model of threading dislocation density in strain-relaxed Ge and GaAs epitaxial films on Si (100). <i>Applied Physics Letters</i> , 2009 , 94, 102115	3.4	69	
104	Effect of the strong magnetic field on the magnetic interaction between two non-magnetic particles migrating in a conductive fluid. <i>Europhysics Letters</i> , 2009 , 85, 14002	1.6	6	
103	Morphology and growth of alumina inclusions in FeAl alloys at low oxygen partial pressure. <i>Ironmaking and Steelmaking</i> , 2009 , 36, 201-208	1.3	23	
102	Lattice Boltzmann modeling of microchannel flow in slip flow regime. <i>Journal of Computational Physics</i> , 2009 , 228, 147-157	4.1	157	

101	Freeze-Lining Formation of a Synthetic Lead Slag: Part I. Microstructure Formation. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2009 , 40, 619-631	2.5	15
100	Freeze-Lining Formation of a Synthetic Lead Slag: Part II. Thermal History. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2009 , 40, 632-642	2.5	19
99	The Importance of Slag Engineering in Freeze-Lining Applications. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2009 , 40, 643-655	2.5	22
98	Interfacial Reactions During Titanium Dissolution in Liquid Iron: A Combined Experimental and Modeling Approach. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2009 , 40, 676-684	2.5	11
97	Experimental Determination of CaOftrOftr2O3MgOBiO2 and Thermodynamic Modeling of the CrOftr2O3MgOBiO2 System. <i>Journal of the American Ceramic Society</i> , 2009 , 92, 1831-1839	3.8	7
96	Interaction of Al2O3-rich slag with MgOII refractories during VOD refiningMgO and spinel layer formation at the slag/refractory interface. <i>Journal of the European Ceramic Society</i> , 2009 , 29, 1053-1060	6	31
95	Degradation of MgOII refractories by MnO-rich stainless steel slags. <i>Ceramics International</i> , 2009 , 35, 2203-2212	5.1	27
94	Formation and Evolution of Alli Oxide Inclusions during Secondary Steel Refining. <i>ISIJ</i> International, 2009 , 49, 1133-1140	1.7	64
93	Speciation of Cu in MSWI bottom ash and its relation to Cu leaching. <i>Applied Geochemistry</i> , 2008 , 23, 3642-3650	3.5	19
92	An introduction to phase-field modeling of microstructure evolution. <i>Calphad: Computer Coupling of Phase Diagrams and Thermochemistry</i> , 2008 , 32, 268-294	1.9	558
91	Indium-assisted Growth of Si Nanowires: Perspectives on Controlled Growth for CMOS Applications. <i>Materials Research Society Symposia Proceedings</i> , 2008 , 1080, 1		
90	Interfacial Reactions during the Dissolution of Titanium in Liquid Iron. <i>Defect and Diffusion Forum</i> , 2008 , 273-276, 467-473	0.7	4
89	A XPS Study of Atmospheric Plasma Sprayed TiB2 Coatings. <i>Key Engineering Materials</i> , 2008 , 368-372, 1347-1350	0.4	4
88	Manganese and Chromium Distribution between CaOBiO2MgOsat.@rO1.5MnO Slags and Fe@rMn Stainless Steel. <i>ISIJ International</i> , 2008 , 48, 1331-1338	1.7	12
87	On the Mass Transport and the Crystal Growth in a Freeze Lining of an Industrial Nonferrous Slag. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2008 , 39, 408-417	2.5	18
86	Hot stage processing of metallurgical slags. <i>Resources, Conservation and Recycling</i> , 2008 , 52, 1121-1131	11.9	84
85	Lattice Boltzmann model for diffusion-controlled indirect dissolution. <i>Computers and Mathematics With Applications</i> , 2008 , 55, 1377-1391	2.7	4
84	Borate Distribution in Stabilized Stainless-Steel Slag. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 548-554	3.8	38

83	Determination of CaOBiO2MgOAl2O3值rOx Liquidus. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 1237-1243	3.8	5
82	Air-Cooling of Metallurgical Slags Containing Multivalent Oxides. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 3342-3348	3.8	16
81	Space- and time-resolved visualization of acid catalysis in ZSM-5 crystals by fluorescence microscopy. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 1706-9	16.4	109
8o	Influence of humidity on the friction of diamond and diamond-like carbon materials. <i>Tribology International</i> , 2007 , 40, 216-219	4.9	31
79	Quantitative mineralogical analysis of hydraulic limes by X-ray diffraction. <i>Cement and Concrete Research</i> , 2007 , 37, 1524-1530	10.3	16
78	Degradation mechanisms of magnesia-carbon refractories by high-alumina stainless steel slags under vacuum. <i>Ceramics International</i> , 2007 , 33, 1007-1018	5.1	28
77	Pinning effect of second-phase particles on grain growth in polycrystalline films studied by 3-D phase field simulations. <i>Acta Materialia</i> , 2007 , 55, 2173-2182	8.4	97
76	In situ observation of the direct and indirect dissolution of MgO particles in CaOAl2O3BiO2-based slags. <i>Journal of the European Ceramic Society</i> , 2007 , 27, 1961-1972	6	85
75	Chemical corrosion mechanisms of magnesial bromite and chrome-free refractory bricks by copper metal and anode slag. <i>Journal of the European Ceramic Society</i> , 2007 , 27, 2433-2444	6	59
74	Using confocal scanning laser microscopy for the in situ study of high-temperature behaviour of complex ceramic materials. <i>Journal of the European Ceramic Society</i> , 2007 , 27, 3497-3507	6	23
73	Three-dimensional phase field simulations of grain growth in materials containing finely dispersed second-phase particles. <i>Proceedings in Applied Mathematics and Mechanics</i> , 2007 , 7, 2020001-2020002	0.2	1
72	Lattice-Boltzmann model for dissolution phenomena. <i>Proceedings in Applied Mathematics and Mechanics</i> , 2007 , 7, 1140701-1140702	0.2	
71	Slag Solidification Modeling Using the Scheil Culliver Assumptions. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 1177-1185	3.8	27
70	In Situ Observation of the Dissolution of Spherical Alumina Particles in CaOAl2O3BiO2 Melts. Journal of the American Ceramic Society, 2007, 90, 070922001308002-???	3.8	5
69	Continuous Fuming of Zinc-Bearing Residues: Part I. Model Development. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2007 , 38, 13-20	2.5	27
68	Continuous Fuming of Zinc-Bearing Residues: Part II. The Submerged-Plasma Zinc-Fuming Process. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2007, 38, 21-33	2.5	36
67	On the Microstructure of a Freeze Lining of an Industrial Nonferrous Slag. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2007 , 38, 841-851	2.5	30
66	Plasma-enhanced chemical vapour deposition growth of Si nanowires with low melting point metal catalysts: an effective alternative to Au-mediated growth. <i>Nanotechnology</i> , 2007 , 18, 505307	3.4	109

65	Bounding box algorithm for three-dimensional phase-field simulations of microstructural evolution in polycrystalline materials. <i>Physical Review E</i> , 2007 , 76, 056702	2.4	38
64	A Phase Field Model for grain Growth and Thermal Grooving in Thin Films with Orientation Dependent Surface Energy. <i>Solid State Phenomena</i> , 2007 , 129, 89-94	0.4	5
63	Alternative Catalysts For Si-Technology Compatible Growth Of Si Nanowires. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1017, 14		2
62	EAF Stainless Steel Refining - Part II: Microstructural Slag Evolution and its Implications for Slag Foaming and Chromium Recovery. <i>Steel Research International</i> , 2007 , 78, 125-135	1.6	15
61	EAF Stainless Steel Refining - Part I: Observational Study on Chromium Recovery in an Eccentric Bottom Tapping Furnace and a Spout Tapping Furnace. <i>Steel Research International</i> , 2007 , 78, 117-124	1.6	15
60	Dissolution and diffusion behavior of Al2O3 in a CaOAl2O3BiO2 liquid: An experimental-numerical approach. <i>Applied Physics Letters</i> , 2007 , 91, 124104	3.4	27
59	Three-dimensional computational-cell modeling of the micromechanics of the martensitic transformation in transformation-induced-plasticity-assisted multiphase steels. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2006 , 37, 99-107	2.3	12
58	Water-cooled probe technique for the study of freeze lining formation. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> , 2006 , 37, 929-940	2.5	22
57	A Thermodynamic Model of the EAF Process for Stainless Steel. <i>Steel Research International</i> , 2006 , 77, 317-323	1.6	8
56	Phase field simulations of grain growth in two-dimensional systems containing finely dispersed second-phase particles. <i>Acta Materialia</i> , 2006 , 54, 1175-1184	8.4	92
55	Degradation mechanisms of magnesia-chromite refractories by high-alumina stainless steel slags under vacuum conditions. <i>Journal of the European Ceramic Society</i> , 2006 , 26, 3831-3843	6	26
54	Steel Cleanliness during Secondary Metallurgy of High-grade Quality Electric Steels. <i>Steel Research International</i> , 2005 , 76, 475-480	1.6	3
53	A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles. <i>Acta Materialia</i> , 2005 , 53, 1771-1781	8.4	85
52	Cold rolling behaviour of an austenitic FeB0MnBAlBSi TWIP-steel: the importance of deformation twinning. <i>Acta Materialia</i> , 2004 , 52, 2005-2012	8.4	365
51	Observation of Inclusions in Manganese-Silicon Killed Steels at Steel-Gas and Steel-Slag Interfaces. <i>ISIJ International</i> , 2004 , 44, 1-10	1.7	28
50	Measurement of ladle slag oxygen activity using electrochemical sensor. <i>Ironmaking and Steelmaking</i> , 2003 , 30, 217-222	1.3	5
49	Behaviour of magnesialarbon refractories in vacuumbxygen decarburisation ladle linings. <i>Ironmaking and Steelmaking</i> , 2003 , 30, 293-300	1.3	29
48	Reoxidation during ladle treatment. <i>Ironmaking and Steelmaking</i> , 2003 , 30, 101-105	1.3	6

(1996-2003)

47	Microstructural Evolution and Crystallographic Texture Formation of Cold Rolled Austenitic Fe-30Mn-3Al-3Si TWIP-Steel. <i>Steel Research International</i> , 2003 , 74, 370-375	1.6	17
46	Micromechanical Modelling of TRIP Steels. Steel Research International, 2003, 74, 365-369	1.6	3
45	A Morphological Comparison between Inclusions in Aluminium Killed Steels and Deposits in Submerged Entry Nozzle. <i>Steel Research International</i> , 2003 , 74, 351-355	1.6	28
44	Material Evaluation to Prevent Nozzle Clogging during Continuous Casting of Al Killed Steels <i>ISIJ</i> International, 2002 , 42, 1234-1240	1.7	47
43	A study of slag-infiltrated magnesia-chromite refractories using hybrid microwave heating. <i>Journal of the European Ceramic Society</i> , 2002 , 22, 903-916	6	23
42	Surface oxidation of NiTi shape memory alloy. <i>Biomaterials</i> , 2002 , 23, 4863-71	15.6	306
41	Non-metallic inclusions in aluminium killed steels. <i>Ironmaking and Steelmaking</i> , 2002 , 29, 437-444	1.3	59
40	A Model for the Prediction of Reaction Diffusion Paths in Multicomponent Systems with Limited Solubility. <i>Materials Transactions</i> , 2001 , 42, 2630-2636	1.3	1
39	Clogging in submerged entry nozzles. Steel Research = Archiv Fa Das Eisenhatenwesen, 2000, 71, 391-395		14
38	Degradation mechanisms of magnesia-chromite refractories in vacumm-oxygen decarburisation ladles during production of stainless steel. <i>Ironmaking and Steelmaking</i> , 2000 , 27, 228-237	1.3	20
37	Electronic spectroscopic study of the tribochemical modifications of TiNDorundum pairs after fretting wear. <i>Wear</i> , 1999 , 231, 220-227	3.5	3
36	XPS study of Au+ ion irradiated a-As2S3 layers. <i>Vacuum</i> , 1998 , 51, 273-275	3.7	2
35	The tribochemical behaviour of TiN-coatings during fretting wear. Wear, 1998, 217, 215-224	3.5	38
34	Study of the wear behaviour of diamond-like coatings at elevated temperatures. <i>Surface and Coatings Technology</i> , 1998 , 98, 1047-1052	4.4	24
33	Tribological behaviour of different diamond-like carbon materials. <i>Surface and Coatings Technology</i> , 1998 , 106, 72-80	4.4	38
32	Comparative study between macrotribology and nanotribology. <i>Journal of Applied Physics</i> , 1998 , 84, 4859-4865	2.5	77
31	Fretting friction and wear of polycrystalline diamond coatings. <i>Diamond and Related Materials</i> , 1996 , 5, 649-653	3.5	13
30	Tribological behaviour and internal stress of diamond coating deposited with a stationary d.c. plasma jet. <i>Surface and Coatings Technology</i> , 1996 , 80, 264-270	4.4	21

29	Calibration procedures for frictional measurements with a lateral force microscope. <i>Wear</i> , 1996 , 192, 141-150	3.5	111
28	Comparative measurement of residual stress in diamond coatings by low-incident-beam-angle-diffraction and micro-Raman spectroscopy. <i>Journal of Materials Research</i> , 1996 , 11, 1776-1782	2.5	38
27	Raman spectroscopy on defective wear debris generated by contact vibrations. <i>Journal of Materials Science Letters</i> , 1995 , 14, 279-281		16
26	The influence of humidity on the fretting behaviour of PVD TiN coatings. Wear, 1995, 180, 43-52	3.5	91
25	Oxidational wear of TiN coatings on tool steel and nitrided tool steel in unlubricated fretting. <i>Wear</i> , 1995 , 188, 130-137	3.5	97
24	Tribo-oxidation of a TiN coating sliding against corundum. <i>Journal of Materials Research</i> , 1994 , 9, 992-99	8 .5	31
23	Crystallization of solid-state amorphized Al-Pt thin films. <i>Thin Solid Films</i> , 1994 , 248, 257-262	2.2	6
22	On the Amorphous and Crystalline State of Electrodeposited Nickel-Phosphorus Coatings. <i>Journal of the Electrochemical Society</i> , 1994 , 141, 294-299	3.9	58
21	Low amplitude oscillating sliding wear on chemically vapour deposited diamond coatings. <i>Diamond and Related Materials</i> , 1993 , 2, 879-884	3.5	33
20	Micro-Raman spectroscopy for the characterization of wear induced surface modifications on hard coatings. <i>Tribology Series</i> , 1993 , 25, 623-630		3
19	R.f. plasma-assisted chemical vapour deposition of diamond-like carbon films on complex geometries. <i>Diamond and Related Materials</i> , 1993 , 2, 272-277	3.5	11
18	Electrochemical deposition: a method for the production of artificially structured materials. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 168, 137-140	5.3	17
17	Frictional Behaviour of Diamond-like carbon and diamond coatings in oscillating sliding. <i>Surface and Coatings Technology</i> , 1993 , 62, 583-588	4.4	15
16	A comparative study of the fretting wear of hard carbon coatings. <i>Thin Solid Films</i> , 1993 , 223, 65-71	2.2	42
15	The effect of Cu on morphological instabilities in thin Al/Pt films. <i>Journal of Materials Research</i> , 1992 , 7, 1093-1095	2.5	
14	R.f. plasma-assisted chemical vapour deposition of diamond-like carbon: physical and mechanical properties. <i>Thin Solid Films</i> , 1992 , 217, 56-61	2.2	90
13	Layered growth of the quasicrystalline decagonal Al3Pd phase in Al/Pd lateral diffusion couples. <i>Physical Review Letters</i> , 1990 , 64, 2671-2674	7.4	7
12	Thermal stability of coevaporated Al-Pt thin films on GaAs substrates. <i>Applied Physics Letters</i> , 1990 , 57, 392-394	3.4	11

LIST OF PUBLICATIONS

11	Kinetic description of the transition from a one-phase to a two-phase growth regime in Al/Pd lateral diffusion couples. <i>Journal of Applied Physics</i> , 1990 , 68, 3259-3267	2.5	9
10	Interaction of Cu with CoSi2 with and without TiNx barrier layers. <i>Applied Physics Letters</i> , 1990 , 57, 1307	'- <u>3</u> .3 <u>.</u> 09	16
9	Simultaneous growth of a crystalline phase and a quasicrystalline phase in lateral Al P d diffusion couples. <i>Philosophical Magazine Letters</i> , 1990 , 61, 21-27	1	7
8	Solid-state amorphization in Al-Pt multilayers by low-temperature annealing. <i>Physical Review B</i> , 1989 , 39, 13067-13071	3.3	28
7	Solid-state amorphization in Al P t thin films. <i>Journal of Materials Research</i> , 1988 , 3, 884-889	2.5	18
6	Short wavelength compositionally modulated Ni/Ni P films prepared by electrodeposition. <i>Journal of Applied Physics</i> , 1986 , 60, 1374-1376	2.5	28
5	Effect of Reduction Parameters on the Size and Morphology of the Metallic Particles in Carbothermally Reduced Stainless Steel Dust. <i>Journal of Sustainable Metallurgy</i> ,1	2.7	1
4	Fundamental Study of the Rare Earths Recycling Through the Pyrotetallurgical Route - Phase Relations and Crystallization Behavior of the Cao-Sio2-Nd2O3 System95-100		
3	Viscosity of Partially Crystallized Bof Slag263-269		2
2	Capillary Interaction Between Arbitrarily-Shaped Inclusions at the Gas/Steel Interface. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> ,1	2.5	1
1	Capillary Interaction Between Micron-Sized Ce2O3 Inclusions at the Ar Gas/Liquid Steel Interface. <i>Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science</i> ,1	2.5	1