Lionel Rosier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5078073/publications.pdf Version: 2024-02-01

LIONEL ROSIER

#	Article	IF	CITATIONS
1	Homogeneous Lyapunov function for homogeneous continuous vector field. Systems and Control Letters, 1992, 19, 467-473.	2.3	675
2	Control and stabilization of the Korteweg-de Vries equation: recent progresses. Journal of Systems Science and Complexity, 2009, 22, 647-682.	2.8	95
3	Global Stabilization of the Generalized Kortewegde Vries Equation Posed on a Finite Domain. SIAM Journal on Control and Optimization, 2006, 45, 927-956.	2.1	93
4	Control and Stabilization of the Korteweg-de Vries Equation on a Periodic Domain. Communications in Partial Differential Equations, 2010, 35, 707-744.	2.2	69
5	On Homogeneous Finite-Time Control for Linear Evolution Equation in Hilbert Space. IEEE Transactions on Automatic Control, 2018, 63, 3143-3150.	5.7	60
6	Control of the surface of a fluid by a wavemaker. ESAIM - Control, Optimisation and Calculus of Variations, 2004, 10, 346-380.	1.3	59
7	Finite-Time Stabilization of \$2imes2\$ Hyperbolic Systems on Tree-Shaped Networks. SIAM Journal on Control and Optimization, 2014, 52, 143-163.	2.1	52
8	Unique continuation property and control for the Benjamin–Bona–Mahony equation on a periodic domain. Journal of Differential Equations, 2013, 254, 141-178.	2.2	48
9	Null controllability of a system of viscoelasticity with a moving control. Journal Des Mathematiques Pures Et Appliquees, 2014, 101, 198-222.	1.6	45
10	Exact boundary controllability of the nonlinear Schrödinger equation. Journal of Differential Equations, 2009, 246, 4129-4153.	2.2	44
11	Local Exact Controllability and Stabilizability of the Nonlinear Schrödinger Equation on a Bounded Interval. SIAM Journal on Control and Optimization, 2009, 48, 972-992.	2.1	42
12	Null controllability of the heat equation using flatness. Automatica, 2014, 50, 3067-3076.	5.0	34
13	Control and stabilization of a family of Boussinesq systems. Discrete and Continuous Dynamical Systems, 2009, 24, 273-313.	0.9	31
14	Stabilization of a Boussinesq system of KdV–KdV type. Systems and Control Letters, 2008, 57, 595-601.	2.3	28
15	Liapunov and lagrange stability: Inverse theorems for discontinuous systems. Mathematics of Control, Signals, and Systems, 1998, 11, 101-128.	2.3	27
16	Internal controllability of the korteweg–de vries equation on a bounded domain. ESAIM - Control, Optimisation and Calculus of Variations, 2015, 21, 1076-1107.	1.3	26
17	CONTROL AND STABILIZATION OF THE NONLINEAR SCHR×DINGER EQUATION ON RECTANGLES. Mathematical Models and Methods in Applied Sciences, 2010, 20, 2293-2347.	3.3	19
18	Control and stabilization of the Benjamin-Ono equation on a periodic domain. Transactions of the American Mathematical Society, 2015, 367, 4595-4626.	0.9	19

LIONEL ROSIER

#	Article	IF	CITATIONS
19	On the Reachable States for the Boundary Control of the Heat Equation. Applied Mathematics Research EXpress, 2016, 2016, 181-216.	1.0	18
20	Finite-time stabilization of a network of strings. Mathematical Control and Related Fields, 2015, 5, 721-742.	1.1	17
21	On Boundary Finite-Time Feedback Control for Heat Equation. IFAC-PapersOnLine, 2017, 50, 671-676.	0.9	16
22	Smooth solutions for the motion of a ball in an incompressible perfect fluid. Journal of Functional Analysis, 2009, 256, 1618-1641.	1.4	15
23	Remarks regarding the gap between continuous, Lipschitz, and differentiable storage functions for dissipation inequalities appearing in Hâ^ž control. Systems and Control Letters, 2000, 41, 237-249.	2.3	14
24	Control and Stabilization of the Benjamin-Ono Equation in \$\${L^2({mathbb{T})}}\$\$ L 2 (T). Archive for Rational Mechanics and Analysis, 2015, 218, 1531-1575.	2.4	14
25	Finite-time stabilization of an overhead crane with a flexible cable. Mathematics of Control, Signals, and Systems, 2019, 31, 1-19.	2.3	14
26	Regularity of Liapunov functions for stable systems. Systems and Control Letters, 2000, 41, 265-270.	2.3	13
27	ON THE CONTROL OF THE MOTION OF A BOAT. Mathematical Models and Methods in Applied Sciences, 2013, 23, 617-670.	3.3	12
28	Boundary stabilization of quasilinear hyperbolic systems of balance laws: exponential decay for small source terms. Journal of Evolution Equations, 2018, 18, 1471-1500.	1.1	12
29	Smooth Lyapunov Functions for Discontinuous Stable Systems. Set-Valued and Variational Analysis, 1999, 7, 375-405.	0.5	9
30	Controllability of the 1D SchrĶdinger equation using flatness. Automatica, 2018, 91, 208-216.	5.0	9
31	Well-posedness of a degenernate parabolic equation issuing from two-dimensional perfect fluid dynamics. Applicable Analysis, 2000, 75, 441-465.	1.3	8
32	Control of a Boussinesq system of KdV–KdV type on a bounded interval. ESAIM - Control, Optimisation and Calculus of Variations, 2019, 25, 58.	1.3	8
33	On the global existence of solutions for a non-local problem occurring in statistical mechanics. Nonlinear Analysis: Theory, Methods & Applications, 2005, 60, 1509-1531.	1.1	7
34	Chaos synchronization for a class of discrete dynamical systems on the N-dimensional torus. Systems and Control Letters, 2006, 55, 223-231.	2.3	6
35	Global stabilization of a coupled system of two generalized Korteweg-de Vries type equations posed on a finite domain. Mathematical Control and Related Fields, 2011, 1, 353-389.	1.1	6
36	Finite-time stabilization of an overhead crane with a flexible cable submitted to an affine tension. ESAIM - Control, Optimisation and Calculus of Variations, 2021, 27, 94.	1.3	4

LIONEL ROSIER

#	Article	IF	CITATIONS
37	Finite-time stabilization of hyperbolic systems over a bounded interval. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2013, 46, 239-244.	0.4	3
38	Well posedness of general cross-diffusion systems. Journal of Differential Equations, 2021, 300, 386-425.	2.2	3
39	Control of underwater vehicles in inviscid fluids. ESAIM - Control, Optimisation and Calculus of Variations, 2014, 20, 662-703.	1.3	2
40	Control of underwater vehicles in inviscid fluids II. Flows with vorticity. ESAIM - Control, Optimisation and Calculus of Variations, 2016, 22, 1325-1352.	1.3	1
41	Identifiability and stability of an inverse problem involving a Fredholm equation. Chinese Annals of Mathematics Series B, 2015, 36, 737-762.	0.4	0
42	Flatness and null controllability of 1â€D parabolic equations. Proceedings in Applied Mathematics and Mechanics, 2016, 16, 47-50.	0.2	0