Matthew R Young

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5077971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Six-junction Ill–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nature Energy, 2020, 5, 326-335.	39.5	408
2	Effects of sodium incorporation in Co-evaporated Cu2ZnSnSe4 thin-film solar cells. Applied Physics Letters, 2013, 102, .	3.3	125
3	Phase identification and control of thin films deposited by co-evaporation of elemental Cu, Zn, Sn, and Se. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	2.1	62
4	Effects of Hydrogen on Acceptor Activation in Ternary Nitride Semiconductors. Advanced Electronic Materials, 2017, 3, 1600544.	5.1	56
5	Transparent conducting zinc oxide thin films doped with aluminum and molybdenum. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 955-960.	2.1	52
6	Investigation of combinatorial coevaporated thin film Cu2ZnSnS4. I. Temperature effect, crystalline phases, morphology, and photoluminescence. Journal of Applied Physics, 2014, 115, .	2.5	44
7	Exploration of Metal Chloride Uptake for Improved Performance Characteristics of PbSe Quantum Dot Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 2892-2899.	4.6	43
8	Post-deposition processing options for high-efficiency sputtered CdS/CdTe solar cells. Journal of Applied Physics, 2014, 115, 064502.	2.5	38
9	Hydrogen diffusion in silicon from plasma-enhanced chemical vapor deposited silicon nitride film at high temperature. Applied Physics Letters, 2008, 92, .	3.3	37
10	Charge carrier dynamics and recombination in graded band gap CuIn1â^'xGaxSe2 polycrystalline thin-film photovoltaic solar cell absorbers. Journal of Applied Physics, 2013, 114, .	2.5	37
11	Upright and Inverted Single-Junction GaAs Solar Cells Grown by Hydride Vapor Phase Epitaxy. IEEE Journal of Photovoltaics, 2017, 7, 157-161.	2.5	36
12	Spectrally and time resolved photoluminescence analysis of the CdS/CdTe interface in thin-film photovoltaic solar cells. Applied Physics Letters, 2013, 102, .	3.3	35
13	Electrical Characterization of Cu Composition Effects in CdS/CdTe Thin-Film Solar Cells With a ZnTe:Cu Back Contact. IEEE Journal of Photovoltaics, 2013, 3, 1095-1099.	2.5	28
14	Combinatorial In Situ Photoelectron Spectroscopy Investigation of Sb ₂ Se ₃ /ZnS Heterointerfaces. Advanced Materials Interfaces, 2016, 3, 1600755.	3.7	28
15	Potential-Induced Degradation of Cu(In,Ca)Se ₂ Solar Cells: Alkali Metal Drift and Diffusion Effects. IEEE Journal of Photovoltaics, 2018, 8, 1337-1342.	2.5	25
16	The impact of sodium contamination in tin sulfide thin-film solar cells. APL Materials, 2016, 4, .	5.1	23
17	Optical-fiber-based, time-resolved photoluminescence spectrometer for thin-film absorber characterization and analysis of TRPL data for CdS/CdTe interface. , 2012, , .		21
18	Six-junction concentrator solar cells. AIP Conference Proceedings, 2018, , .	0.4	21

MATTHEW R YOUNG

#	Article	IF	CITATIONS
19	Sodium-doped molybdenum targets for controllable sodium incorporation in CIGS solar cells. , 2011, , .		15
20	Effects of back-contacting method and temperature on CdTe/CdS solar cells. , 2010, , .		14
21	Internal Resistive Barriers Related to Zinc Diffusion During the Growth of Inverted Metamorphic Multijunction Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 167-173.	2.5	14
22	Electron scattering mechanisms in polycrystalline sputtered zinc tin oxynitride thin films. Journal of Applied Physics, 2019, 126, 035701.	2.5	13
23	Hydrogenation Mechanisms of Poly‣i/SiO _{<i>x</i>} Passivating Contacts by Different Capping Layers. Solar Rrl, 2020, 4, 1900476.	5.8	13
24	Tetrahedrally coordinated disordered Cu2SnS3–Cu2ZnSnS4–ZnS alloys with tunable optical and electronic properties. Solar Energy Materials and Solar Cells, 2014, 129, 124-131.	6.2	12
25	Hydrogen-Assisted Defect Engineering of Doped Poly-Si Films for Passivating Contact Solar Cells. ACS Applied Energy Materials, 2019, 2, 8783-8791.	5.1	12
26	Potential-Induced Degradation Depends on Leakage Current and Light/Electrical Bias in Cu(In,Ga)Se ₂ Devices. IEEE Journal of Photovoltaics, 2019, 9, 1852-1856.	2.5	10
27	Hydrogenation Mechanisms of Poly‣i/SiO _{<i>x</i>} Passivating Contacts by Different Capping Layers. Solar Rrl, 2020, 4, 2070033.	5.8	10
28	Improvement of Short-Circuit Current Density in GalnP Solar Cells Grown by Dynamic Hydride Vapor Phase Epitaxy. IEEE Journal of Photovoltaics, 2018, 8, 1616-1620.	2.5	8
29	Templated Growth of Metastable Polymorphs on Amorphous Substrates with Seed Layers. Physical Review Applied, 2020, 13, .	3.8	7
30	Conduction band position tuning and Ga-doping in (Cd,Zn)S alloy thin films. Materials Chemistry Frontiers, 2017, 1, 1342-1348.	5.9	6
31	GaAs solar cells grown on intentionally contaminated GaAs substrates. Journal of Crystal Growth, 2020, 541, 125668.	1.5	6
32	Improvement of front-junction GaInP by point-defect injection and annealing. , 2021, , .		5
33	Inverted metamorphic GaInAs solar cell grown by dynamic hydride vapor phase epitaxy. Applied Physics Letters, 2021, 119, .	3.3	4
34	Potential-induced degradation of Cu(In,Ga)Se2 can occur by shunting the front i-ZnO and by damaging the p-n junction. Solar Energy, 2022, 232, 298-303.	6.1	4
35	Density profiles in sputtered molybdenum thin films and their effects on sodium diffusion in Cu(In <inf>x</inf> Ga <inf>1−x</inf>)Se <inf>2</inf> photovoltaics. , 2011, , .		3
36	Dopant Diffusion Control for Improved Tandem Cells Grown by D-HVPE. IEEE Journal of Photovoltaics, 2021, 11, 1251-1255.	2.5	3

MATTHEW R YOUNG

0

#	Article	IF	CITATIONS
37	Electrical characterization of Cu composition effects in CdS/CdTe thin-film solar cells with a ZnTe:Cu back contact. , 2012, , .		2
38	Rapid fabrication of Cu(In, Ga)Se <inf>2</inf> thin films from Se-containing precursors by the two-step selenization process. , 2013, , .		1
39	Heteroepitaxial growth of CZTS. , 2014, , .		1
40	Plasma immersion ion implantation for interdigitated back passivated contact (IBPC) solar cells. , 2016, , .		1
41	Notice of Removal Upright and inverted single junction GaAs solar cells grown by hydride vapor phase epitaxy. , 2017, , .		1
42	Rapid fabrication of Cu(In,Ga)Se <inf>2</inf> thin films by the two-step selenization process. , 2012, , .		0
43	Electrical characterization of Cu composition effects in CdS/CdTe thin-film solar cells with a ZnTe:Cu back contact. , 2013, , .		0
44	Rapid fabrication of Cu(In,Ga)Se <inf>2</inf> thin films by the two-step selenization process. , 2013, , .		0
45	Investigation of Sb-containing precursors for Cu(In, Ga)Se <inf>2</inf> thin films through design of experiments. , 2016, , .		0

GaAs solar cells grown on intentionally contaminated GaAs substrates. , 2020, , .