
Mahesh D Patil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5077770/publications.pdf Version: 2024-02-01

Μλήρεη Ο Ρλτι

#	Article	IF	CITATIONS
1	Arginine dependence of tumor cells: targeting a chink in cancer's armor. Oncogene, 2016, 35, 4957-4972.	2.6	195
2	Oxidoreductase-Catalyzed Synthesis of Chiral Amines. ACS Catalysis, 2018, 8, 10985-11015.	5.5	150
3	Recent Advances in ω-Transaminase-Mediated Biocatalysis for the Enantioselective Synthesis of Chiral Amines. Catalysts, 2018, 8, 254.	1.6	139
4	Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chemical Reviews, 2021, 121, 6173-6245.	23.0	62
5	Deracemization of Racemic Amines to Enantiopure (<i>R</i>)―and (<i>S</i>)â€amines by Biocatalytic Cascade Employing ωâ€Transaminase and Amine Dehydrogenase. ChemCatChem, 2019, 11, 1898-1902.	1.8	42
6	Production of mycophenolic acid by Penicillium brevicompactum—A comparison of two methods of optimization. Biotechnology Reports (Amsterdam, Netherlands), 2016, 11, 77-85.	2.1	39
7	Parallel anti-sense two-step cascade for alcohol amination leading to ω-amino fatty acids and α,ω-diamines. Green Chemistry, 2018, 20, 4591-4595.	4.6	38
8	Biosynthesis of Medium- to Long-Chain α,ï‰-Diols from Free Fatty Acids Using CYP153A Monooxygenase, Carboxylic Acid Reductase, and E. coli Endogenous Aldehyde Reductases. Catalysts, 2018, 8, 4.	1.6	35
9	Enzymatic synthesis of sitagliptin intermediate using a novel ï‰-transaminase. Enzyme and Microbial Technology, 2019, 120, 52-60.	1.6	34
10	Biosynthesis of the Nylon 12 Monomer, ï‰â€Aminododecanoic Acid with Novel CYP153A, AlkJ, and ï‰â€TA Enzymes. Biotechnology Journal, 2018, 13, e1700562.	1.8	33
11	Chemical modification of enzymes to improve biocatalytic performance. Biotechnology Advances, 2021, 53, 107868.	6.0	32
12	Use of response surface method for maximizing the production of arginine deiminase by Pseudomonas putida. Biotechnology Reports (Amsterdam, Netherlands), 2016, 10, 29-37.	2.1	31
13	Mycophenolate co-administration with quercetin via lipid-polymer hybrid nanoparticles for enhanced breast cancer management. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102147.	1.7	31
14	Biocatalyzed Câ^'C Bond Formation for the Production of Alkaloids. ChemCatChem, 2018, 10, 4783-4804.	1.8	30
15	Liposomal Delivery of Mycophenolic Acid With Quercetin for Improved Breast Cancer Therapy in SD Rats. Frontiers in Bioengineering and Biotechnology, 2020, 8, 631.	2.0	28
16	Surfactant-mediated permeabilization of Pseudomonas putida KT2440 and use of the immobilized permeabilized cells in biotransformation. Process Biochemistry, 2017, 63, 113-121.	1.8	27
17	Production of Mycophenolic Acid by Penicillium brevicompactum Using Solid State Fermentation. Applied Biochemistry and Biotechnology, 2017, 182, 97-109.	1.4	24
18	Ultrasonic disruption of Pseudomonas putida for the release of arginine deiminase: Kinetics and predictive models. Bioresource Technology, 2017, 233, 74-83.	4.8	23

MAHESH D PATIL

#	Article	IF	CITATIONS
19	Recent Advances in Enzyme Engineering through Incorporation of Unnatural Amino Acids. Biotechnology and Bioprocess Engineering, 2019, 24, 592-604.	1.4	21
20	An Integrated Cofactor/Coâ€Product Recycling Cascade for the Biosynthesis of Nylon Monomers from Cycloalkylamines. Angewandte Chemie - International Edition, 2021, 60, 3481-3486.	7.2	19
21	Biosynthesis of Nylon 12 Monomer, ω-Aminododecanoic Acid Using Artificial Self-Sufficient P450, AlkJ and Ή-TA. Catalysts, 2018, 8, 400.	1.6	18
22	Multi-enzymatic cascade reactions with <i>Escherichia coli</i> -based modules for synthesizing various bioplastic monomers from fatty acid methyl esters. Green Chemistry, 2022, 24, 2222-2231.	4.6	17
23	Disruption of Pseudomonas putida by high pressure homogenization: a comparison of the predictive capacity of three process models for the efficient release of arginine deiminase. AMB Express, 2016, 6, 84.	1.4	16
24	Bioreactor studies of production of mycophenolic acid by Penicillium brevicompactum. Biochemical Engineering Journal, 2018, 140, 77-84.	1.8	16
25	Production of 12-hydroxy dodecanoic acid methyl ester using a signal peptide sequence-optimized transporter AlkL and a novel monooxygenase. Bioresource Technology, 2019, 291, 121812.	4.8	16
26	Glutamate as an Efficient Amine Donor for the Synthesis of Chiral β―and γâ€Amino Acids Using Transaminase. ChemCatChem, 2019, 11, 1437-1440.	1.8	16
27	Kinetic Resolution of Racemic Amines to Enantiopure (S)-amines by a Biocatalytic Cascade Employing Amine Dehydrogenase and Alanine Dehydrogenase. Catalysts, 2019, 9, 600.	1.6	15
28	Optimization of media and culture conditions for the production of tacrolimus by Streptomyces tsukubaensis in shake flask and fermenter level. Biocatalysis and Agricultural Biotechnology, 2020, 29, 101803.	1.5	12
29	Purification and characterization of arginine deiminase from Pseudomonas putida: Structural insights of the differential affinities of l-arginine analogues. Journal of Bioscience and Bioengineering, 2019, 127, 129-137.	1.1	11
30	Promoter engineeringâ€mediated Tuning of esterase and transaminase expression for the chemoenzymatic synthesis of sitagliptin phosphate at the kilogramâ€scale. Biotechnology and Bioengineering, 2021, 118, 3263-3268.	1.7	11
31	Combined effect of attrition and ultrasound on the disruption of <i>Pseudomonas putida</i> for the efficient release of arginine deiminase. Biotechnology Progress, 2018, 34, 1185-1194.	1.3	9
32	<i>In vivo</i> biosynthesis of tyrosine analogs and their concurrent incorporation into a residue-specific manner for enzyme engineering. Chemical Communications, 2019, 55, 15133-15136.	2.2	9
33	Machine learning modelling for the high-pressure homogenization-mediated disruption of recombinant E. coli. Process Biochemistry, 2018, 71, 182-190.	1.8	8
34	Enzymatic Synthesis of Aliphatic Primary ω-Amino Alcohols from ω-Amino Fatty Acids by Carboxylic Acid Reductase. Catalysis Letters, 2020, 150, 3079-3085.	1.4	8
35	An Integrated Cofactor/Coâ€Product Recycling Cascade for the Biosynthesis of Nylon Monomers from Cycloalkylamines. Angewandte Chemie, 2021, 133, 3523-3528.	1.6	6
36	Characterization of ELP-fused ω-Transaminase and Its Application for the Biosynthesis of β-Amino Acid. Biotechnology and Bioprocess Engineering, 2018, 23, 481-489.	1.4	4

#	Article	IF	CITATIONS
37	Machine learning modelling for the ultrasonication-mediated disruption of recombinant E. coli for the efficient release of nitrilase. Ultrasonics, 2019, 98, 72-81.	2.1	4
38	Machine Learning Modeling for Ultrasonication-Mediated Fermentation of Penicillium brevicompactum to Enhance the Release of Mycophenolic Acid. Ultrasound in Medicine and Biology, 2021, 47, 777-786.	0.7	4