
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5077608/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Tumorigenic transformation of human prostatic epithelial cell line RWPEâ€∃ by growth<br>hormoneâ€releasing hormone (GHRH). Prostate, 2022, 82, 933-941.                                                                           | 2.3 | 3         |
| 2  | Stimulation of neuroendocrine differentiation in prostate cancer cells by GHRH and its blockade by GHRH antagonists. Investigational New Drugs, 2020, 38, 746-754.                                                                | 2.6 | 10        |
| 3  | Heterofunctional ruthenium(II) carbosilane dendrons, a new class of dendritic molecules to fight against prostate cancer. European Journal of Medicinal Chemistry, 2020, 207, 112695.                                             | 5.5 | 7         |
| 4  | Anticancer Activity of Dendriplexes against Advanced Prostate Cancer from Protumoral Peptides and<br>Cationic Carbosilane Dendrimers. Biomacromolecules, 2019, 20, 1224-1234.                                                     | 5.4 | 14        |
| 5  | In vitro and in vivo evaluation of first-generation carbosilane arene Ru(II)-metallodendrimers in<br>advanced prostate cancer. European Polymer Journal, 2019, 113, 229-235.                                                      | 5.4 | 17        |
| 6  | In vitro antitumor and hypotensive activity of peptides from olive seeds. Journal of Functional Foods, 2018, 42, 177-184.                                                                                                         | 3.4 | 30        |
| 7  | Growth hormoneâ€releasing hormone receptor antagonists modify molecular machinery in the progression of prostate cancer. Prostate, 2018, 78, 915-926.                                                                             | 2.3 | 10        |
| 8  | Growth hormone-releasing hormone (GHRH) promotes metastatic phenotypes through EGFR/HER2<br>transactivation in prostate cancer cells. Molecular and Cellular Endocrinology, 2017, 446, 59-69.                                     | 3.2 | 16        |
| 9  | Growth hormone-releasing hormone induced transactivation of epidermal growth factor receptor in human triple-negative breast cancer cells. Peptides, 2016, 86, 153-161.                                                           | 2.4 | 6         |
| 10 | Anti-proliferative and pro-apoptotic effects of GHRH antagonists in prostate cancer. Oncotarget, 2016,<br>7, 52195-52206.                                                                                                         | 1.8 | 8         |
| 11 | VIP induces NF-κB1-nuclear localisation through different signalling pathways in human tumour and non-tumour prostate cells. Cellular Signalling, 2015, 27, 236-244.                                                              | 3.6 | 13        |
| 12 | Growth hormone-releasing hormone antagonists abolish the transactivation of human epidermal<br>growth factor receptors in advanced prostate cancer models. Investigational New Drugs, 2014, 32,<br>871-882.                       | 2.6 | 15        |
| 13 | Signalling pathways involved in antitumoral effects of VIP in human renal cell carcinoma A498 cells:<br>VIP induction of p53 expression. International Journal of Biochemistry and Cell Biology, 2014, 53,<br>295-301.            | 2.8 | 5         |
| 14 | Inhibitory effects of antagonists of growth hormoneâ€releasing hormone on growth and invasiveness of PC3 human prostate cancer. International Journal of Cancer, 2013, 132, 755-765.                                              | 5.1 | 18        |
| 15 | Antitumoral effects of vasoactive intestinal peptide in human renal cell carcinoma xenografts in athymic nude mice. Cancer Letters, 2013, 336, 196-203.                                                                           | 7.2 | 12        |
| 16 | Vasoactive intestinal peptide induces oxidative stress and suppresses metastatic potential in human clear cell renal cell carcinoma. Molecular and Cellular Endocrinology, 2013, 365, 212-222.                                    | 3.2 | 14        |
| 17 | RNA interference-directed silencing of VPAC1 receptor inhibits VIP effects on both EGFR and HER2<br>transactivation and VEGF secretion in human breast cancer cells. Molecular and Cellular<br>Endocrinology, 2012, 348, 241-246. | 3.2 | 29        |
| 18 | Vasoactive intestinal peptide (VIP) inhibits human renal cell carcinoma proliferation. Biochimica Et<br>Biophysica Acta - Molecular Cell Research, 2012, 1823, 1676-1685.                                                         | 4.1 | 24        |

| #  | Article                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Antioxidant activity of vasoactive intestinal peptide in HK2 human renal cells. Peptides, 2012, 38, 275-281.                                                                                                                                                                                  | 2.4 | 16        |
| 20 | Overexpression of vasoactive intestinal peptide receptors and cyclooxygenase-2 in human prostate cancer. Analysis of potential prognostic relevance. Histology and Histopathology, 2012, 27, 1093-101.                                                                                        | 0.7 | 18        |
| 21 | Regulation of HER expression and transactivation in human prostate cancer cells by a targeted cytotoxic bombesin analog (ANâ€215) and a bombesin antagonist (RCâ€3095). International Journal of Cancer, 2010, 127, 1813-1822.                                                                | 5.1 | 17        |
| 22 | Vasoactive intestinal peptide (VIP) induces malignant transformation of the human prostate epithelial cell line RWPE-1. Cancer Letters, 2010, 299, 11-21.                                                                                                                                     | 7.2 | 29        |
| 23 | Nuclear localization of vasoactive intestinal peptide (VIP) receptors in human breast cancer. Peptides, 2010, 31, 2035-2045.                                                                                                                                                                  | 2.4 | 51        |
| 24 | Vasoactive intestinal peptide behaves as a proâ€metastatic factor in human prostate cancer cells.<br>Prostate, 2009, 69, 774-786.                                                                                                                                                             | 2.3 | 27        |
| 25 | Multifunctional role of VIP in prostate cancer progression in a xenograft model: Suppression by curcumin and COX-2 inhibitor NS-398. Peptides, 2009, 30, 2357-2364.                                                                                                                           | 2.4 | 21        |
| 26 | Vasoactive intestinal peptide (VIP) induces transactivation of EGFR and HER2 in human breast cancer cells. Molecular and Cellular Endocrinology, 2009, 302, 41-48.                                                                                                                            | 3.2 | 50        |
| 27 | Vasoactive intestinal peptide (VIP) increases vascular endothelial growth factor (VEGF) expression and secretion in human breast cancer cells. Regulatory Peptides, 2007, 144, 101-108.                                                                                                       | 1.9 | 29        |
| 28 | Vasoactive intestinal peptide enhances growth and angiogenesis of human experimental prostate cancer in a xenograft model. Peptides, 2007, 28, 1896-1901.                                                                                                                                     | 2.4 | 30        |
| 29 | Vasoactive intestinal peptide induces cyclooxygenase-2 expression through nuclear factor-κB in human prostate cell lines. Molecular and Cellular Endocrinology, 2007, 270, 8-16.                                                                                                              | 3.2 | 19        |
| 30 | Transactivation of HER2 by vasoactive intestinal peptide in experimental prostate cancer: Antagonistic action of an analog of growth-hormone-releasing hormone. International Journal of Oncology, 2007, 31, 1223-30.                                                                         | 3.3 | 5         |
| 31 | Hypoxia regulation of expression and angiogenic effects of vasoactive intestinal peptide (VIP) and VIP receptors in LNCaP prostate cancer cells. Molecular and Cellular Endocrinology, 2006, 249, 116-122.                                                                                    | 3.2 | 22        |
| 32 | Expression of the transient receptor potential vanilloid 1 (TRPV1) in LNCaP and PC-3 prostate cancer cells and in human prostate tissue. European Journal of Pharmacology, 2005, 515, 20-27.                                                                                                  | 3.5 | 114       |
| 33 | Vasoactive intestinal peptide (VIP) induces c-fos expression in LNCaP prostate cancer cells through a mechanism that involves Ca2+ signalling. Implications in angiogenesis and neuroendocrine differentiation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1744, 224-233. | 4.1 | 37        |
| 34 | Vasoactive intestinal peptide induces neuroendocrine differentiation in the LNCaP prostate cancer cell line through PKA, ERK, and PI3K. Prostate, 2005, 63, 44-55.                                                                                                                            | 2.3 | 45        |
| 35 | Expression of vasoactive intestinal peptide and functional VIP receptors in human prostate cancer:<br>Antagonistic action of a growth-hormone-releasing hormone analog. International Journal of<br>Oncology, 2005, 26, 1629-35.                                                              | 3.3 | 11        |
| 36 | Pituitary adenylate cyclase-activating peptide/vasoactive intestinal peptide receptors in human normal mammary gland and breast cancer tissue. Gynecological Endocrinology, 2005, 20, 327-333.                                                                                                | 1.7 | 24        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effects of the Antiandrogen Flutamide on the Expression of Protein Kinase C Isoenzymes in LNCaP and PC3 Human Prostate Cancer Cells. Bioscience Reports, 2004, 24, 11-21.                                                        | 2.4 | 9         |
| 38 | PACAP expression and distribution in human breast cancer and healthy tissue. Cancer Letters, 2004, 205, 189-195.                                                                                                                 | 7.2 | 26        |
| 39 | Vasoactive intestinal peptide increases vascular endothelial growth factor expression and<br>neuroendocrine differentiation in human prostate cancer LNCaP cells. Regulatory Peptides, 2004, 119,<br>69-75.                      | 1.9 | 41        |
| 40 | Expression of functionally active cannabinoid receptor CB1in the human prostate gland. Prostate, 2003, 54, 95-102.                                                                                                               | 2.3 | 24        |
| 41 | VIP and PACAP are autocrine factors that protect the androgen-independent prostate cancer cell line<br>PC-3 from apoptosis induced by serum withdrawal. British Journal of Pharmacology, 2003, 139,<br>1050-1058.                | 5.4 | 57        |
| 42 | Expression of functional PACAP/VIP receptors in human prostate cancer and healthy tissue. Peptides, 2003, 24, 893-902.                                                                                                           | 2.4 | 22        |
| 43 | Regulation of the expression of protein kinase C isoenzymes in rat ventral prostate: effects of age, castration and flutamide treatment. Life Sciences, 2002, 71, 2257-2266.                                                     | 4.3 | 11        |
| 44 | Expression and distribution of pituitary adenylate cyclase-activating peptide in human prostate and prostate cancer tissues. Regulatory Peptides, 2002, 110, 9-15.                                                               | 1.9 | 16        |
| 45 | Effects of the luteinising hormone-releasing hormone (LH-RH) agonist leuprolide on adenylyl cyclase<br>regulation through G-protein coupled receptors in rat ventral prostate. European Journal of Cancer,<br>2001, 37, 641-648. | 2.8 | 3         |
| 46 | LOW EXPRESSION OF GÎ $\pm$ PROTEIN SUBUNITS IN HUMAN PROSTATE CANCER. Journal of Urology, 2001, 166, 2512-2517.                                                                                                                  | 0.4 | 9         |
| 47 | Neuroendocrine differentiation of the LNCaP prostate cancer cell line maintains the expression and function of VIP and PACAP receptors. Cellular Signalling, 2001, 13, 887-894.                                                  | 3.6 | 36        |
| 48 | Effects ofPygeum africanum extract (Tadenan�) on vasoactive intestinal peptide receptors, G proteins,<br>and adenylyl cyclase in rat ventral prostate. Prostate, 2000, 45, 245-252.                                              | 2.3 | 6         |
| 49 | Effect of flutamide-induced androgen-receptor blockade on adenylate cyclase activation through<br>G-protein coupled receptors in rat prostate. Cellular Signalling, 2000, 12, 311-316.                                           | 3.6 | 10        |
| 50 | Identification and Functional Properties of the Pituitary Adenylate Cyclase Activating Peptide (PAC1)<br>Receptor in Human Benign Hyperplastic Prostate. Cellular Signalling, 1999, 11, 813-819.                                 | 3.6 | 19        |
| 51 | 5-Hydroxytryptamine1A Receptor-Mediated Effects on Adenylate Cyclase and Nitric Oxide Synthase<br>Activities in Rat Ventral Prostate. Cellular Signalling, 1998, 10, 583-587.                                                    | 3.6 | 9         |
| 52 | Ontogenic Development of the Adenylyl Cyclase Enzyme and the αs, αi1 and αi2 G-protein Regulatory<br>Subunits from Rat Prostate. Cellular Signalling, 1997, 9, 451-456.                                                          | 3.6 | 3         |
| 53 | G-proteins and β-adrenergic stimulation of adenylate cyclase activity in the diabetic rat prostate. , 1997, 33, 46-54.                                                                                                           |     | 15        |
| 54 | Characterization of vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptors in human benign hyperplastic prostate. Endocrinology, 1996, 137, 2815-2822.                                           | 2.8 | 16        |

| #  | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Protein kinase c regulation of the adenylyl cyclase system in rat prostatic epithelium. Prostate, 1995, 27, 204-211.                                                                                                                 | 2.3 | 15        |
| 56 | Protein kinase C isozymes in prostatic epithelial cells from normal, diabetic and insulin-treated diabetic rats. General Pharmacology, 1995, 26, 1673-1678.                                                                          | 0.7 | 10        |
| 57 | Ontogeny of vasoactive intestinal peptide receptors in rat ventral prostate. General Pharmacology, 1994, 25, 509-514.                                                                                                                | 0.7 | 22        |
| 58 | Neuropeptide Y inhibits vasoactive intestinal peptide-stimulated adenylyl cyclase in rat ventral prostate. Neuropeptides, 1994, 27, 31-37.                                                                                           | 2.2 | 10        |
| 59 | Characterization of protein kinase C in rat and human prostates. Bioscience Reports, 1993, 13, 313-323.                                                                                                                              | 2.4 | 5         |
| 60 | Alteration of Protein Kinase C Activity in Diabetic Rat Prostate. Biochemical and Biophysical Research<br>Communications, 1993, 195, 166-172.                                                                                        | 2.1 | 13        |
| 61 | Receptors for tumor-promoting phorbol esters in rat ventral prostate. Cancer Letters, 1993, 68, 143-147.                                                                                                                             | 7.2 | 3         |
| 62 | Differential effect of arachidonic acid on the vasoactive intestinal peptide receptor/effector system in rat prostatic epithelium during sexual maturation. Peptides, 1992, 13, 1117-1122.                                           | 2.4 | 5         |
| 63 | The effect of streptozotocin diabetes on the vasoactive intestinal peptide receptor/effector system in membranes from rat ventral prostate. Endocrinology, 1992, 131, 1993-1998.                                                     | 2.8 | 5         |
| 64 | Cholesterol modulation of membrane fluidity and VIP receptor/effector system in rat prostatic epithelial cells. Regulatory Peptides, 1991, 33, 287-297.                                                                              | 1.9 | 10        |
| 65 | Effect of lindane upon the β-adrenergic stimulation of cyclic AMP accumulation in rat renal cortical tubules caused by alterations in membrane fluidity. Life Sciences, 1991, 49, 1141-1154.                                         | 4.3 | 14        |
| 66 | Up-modulation of phorbol dibutyrate receptors by carbachol and arachidonic acid in rat prostatic epithelial cells. Bioscience Reports, 1991, 11, 189-194.                                                                            | 2.4 | 2         |
| 67 | Modulation of the β-adrenergic stimulation of cyclic AMP accumulation in rat prostatic epithelial cells by membrane fluidity. General Pharmacology, 1990, 21, 931-933.                                                               | 0.7 | 10        |
| 68 | β-Adrenergic stimulation of cyclic AMP accumulation in rat prostatic epithelial cells during sexual maturation. Mechanisms of Ageing and Development, 1990, 52, 79-86.                                                               | 4.6 | 8         |
| 69 | Lindane inhibits β-adrenergic stimulation of cyclic AMP accumulation in rat prostatic epithelial cells.<br>Pesticide Biochemistry and Physiology, 1990, 38, 197-203.                                                                 | 3.6 | 6         |
| 70 | Uncoupling of VIP receptor/effector system in rat prostatic epithelium by increasing cell membrane<br>rigidity. Regulatory Peptides, 1989, 26, 176.                                                                                  | 1.9 | 0         |
| 71 | Influence of castration and testosterone treatment on the vasoactive intestinal peptide<br>receptor/effector system in rat prostatic epithelial cells. Biochimica Et Biophysica Acta - Molecular<br>Cell Research, 1988, 969, 86-90. | 4.1 | 20        |
| 72 | Somatostatin inhibits VIP- and isoproterenol-stimulated cyclic AMP accumulation in rat prostatic epithelial cells. FEBS Letters, 1987, 218, 73-76.                                                                                   | 2.8 | 10        |

| #  | Article                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Tumor-promoting phorbol esters interfere with the vasoactive intestinal peptide receptor/effector<br>system in rat prostatic epithelial cells. Biochemical and Biophysical Research Communications, 1987,<br>149, 221-226.                             | 2.1 | 8         |
| 74 | Tissue and plasma distribution of exogenous growth hormone-releasing factor analogue (GRF1-29NH2)<br>after intravenous, subcutaneous and intraperitoneal injection in the rat. General Pharmacology, 1987,<br>18, 551-554.                             | 0.7 | 3         |
| 75 | Growth hormone binding and stimulation of amino acid uptake in epithelial cells of rat ventral prostate. Cell Biochemistry and Function, 1987, 5, 63-68.                                                                                               | 2.9 | 8         |
| 76 | Characterization and age dependence of the stimulatory effect of VIP on cyclic AMP accumulation in rat Leydig cells. Bioscience Reports, 1987, 7, 805-811.                                                                                             | 2.4 | 7         |
| 77 | Effect of gastroduodenostomy on intestinal vasoactive intestinal peptide (VIP) levels, and VIP binding<br>and VIP stimulation of cyclic AMP in intestinal epithelial cells from rat. Biochemical Medicine and<br>Metabolic Biology, 1987, 37, 307-313. | 0.7 | 3         |
| 78 | Effects of age and androgens upon functional vasoactive intestinal peptide receptors in rat prostatic<br>epithelial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1986, 888, 338-343.                                                | 4.1 | 14        |
| 79 | Characterization of insulin receptors in isolated epithelial cells of rat ventral prostate: Effect of fasting. Cell Biochemistry and Function, 1986, 4, 19-24.                                                                                         | 2.9 | 17        |
| 80 | Cyclic AMP response to vasoactive intestinal peptide and β-adrenergic or cholinergic agonists in isolated epithelial cells of rat ventral prostate. Bioscience Reports, 1985, 5, 791-797.                                                              | 2.4 | 16        |
| 81 | In vitro age-dependent incorporation of [1-14C]acetate into lipid subclasses in rat ventral prostate.<br>International Journal of Biochemistry & Cell Biology, 1985, 17, 1129-1132.                                                                    | 0.5 | 6         |
| 82 | Vip binding to epithelial cell membranes of rat ventral prostate: Effect of guanine nucleotides.<br>General Pharmacology, 1985, 16, 495-500.                                                                                                           | 0.7 | 14        |
| 83 | [1-14C]acetate incorporation into free and esterified cholesterol during the development of the rat<br>ventral prostate. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1984, 79,<br>633-636.                               | 0.2 | 3         |
| 84 | Cyclic AMP-stimulating effect of vasoactive intestinal peptide in isolated epithelial cells of rat ventral<br>prostate. Biochimica Et Biophysica Acta - Molecular Cell Research, 1983, 763, 414-418.                                                   | 4.1 | 40        |
| 85 | Receptors for vasoactive intestinal peptide on isolated epithelial cells of rat ventral prostate.<br>Biochimica Et Biophysica Acta - Molecular Cell Research, 1983, 763, 408-413.                                                                      | 4.1 | 45        |