Maria Luisa Cordero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5077402/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study of the interaction of folic acid-modified gold nanorods and fibrinogen through microfluidics: implications for protein adsorption, incorporation and viability of cancer cells. Nanoscale, 2021, 13, 17807-17821.	5.6	4
2	Perfect Brewster transmission through ultrathin perforated films. Wave Motion, 2020, 93, 102485.	2.0	3
3	Bacteria driving droplets. Soft Matter, 2020, 16, 1359-1365.	2.7	25
4	Local details versus effective medium approximation: A study of diffusion in microfluidic random networks made from Voronoi tessellations. Physical Review E, 2020, 101, 023110.	2.1	2
5	Effects of preparation on catalytic, magnetic and hybrid micromotors on their functional features and application in gastric cancer biomarker detection. Sensors and Actuators B: Chemical, 2020, 310, 127843.	7.8	19
6	Magnetotactic bacteria in a droplet self-assemble into a rotary motor. Nature Communications, 2019, 10, 5082.	12.8	41
7	Noble microfluidic system for bioceramic nanoparticles engineering. Materials Science and Engineering C, 2019, 102, 221-227.	7.3	19
8	Generation and study of acoustic "spoof plasmons―in a metamaterial formed by an array of sound-soft inclusions. Proceedings of Meetings on Acoustics, 2018, , .	0.3	0
9	Peptide functionalized magneto-plasmonic nanoparticles obtained by microfluidics for inhibition of β-amyloid aggregation. Journal of Materials Chemistry B, 2018, 6, 5091-5099.	5.8	11
10	Classical homogenization to analyse the dispersion relations of spoof plasmons with geometrical and compositional effects. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150472.	2.1	11
11	Measurement of the dispersion relation of a convectively unstable capillary jet under confinement. Physics of Fluids, 2015, 27, .	4.0	3
12	Tuning the wavelength of spoof plasmons by adjusting the impedance contrast in an array of penetrable inclusions. Applied Physics Letters, 2015, 107, 084104.	3.3	2
13	Effect of confinement on the deformation of microfluidic drops. Physical Review E, 2014, 89, 033004.	2.1	18
14	Quantitative analysis of the dripping and jetting regimes in co-flowing capillary jets. Physics of Fluids, 2011, 23, .	4.0	58
15	Optical blocking of microfluidic droplets through laser-induced thermocapillarity. , 2009, , .		0
16	Time-resolved temperature rise in a thin liquid film due to laser absorption. Physical Review E, 2009, 79, 011201.	2.1	51
17	Mixing via thermocapillary generation of flow patterns inside a microfluidic drop. New Journal of Physics, 2009, 11, 075033.	2.9	37
18	Laser-Induced Force on a Microfluidic Drop: Origin and Magnitude. Langmuir, 2009, 25, 5127-5134.	3.5	81

#	Article	IF	CITATIONS
19	Thermocapillary manipulation of droplets using holographic beam shaping: Microfluidic pin ball. Applied Physics Letters, 2008, 93, .	3.3	75
20	Resonant frequency shifts induced by a large spherical object in an air-filled acoustic cavity. Journal of the Acoustical Society of America, 2007, 121, EL244.	1.1	6
21	Formation of granular jets observed by high-speed X-ray radiography. Nature Physics, 2005, 1, 164-167.	16.7	115