Fernando Gonzalez-Posada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5077351/publications.pdf

Version: 2024-02-01

45 papers

827 citations

567281 15 h-index 28 g-index

45 all docs

45 docs citations

45 times ranked

1457 citing authors

#	Article	IF	CITATIONS
1	Semiconductor plasmonics and metamaterials for IR applications. , 2022, , .		O
2	Quantum plasmonics and hyperbolic material for biosensing. , 2022, , .		0
3	Heavily Doped Semiconductor Metamaterials for Midâ€Infrared Multispectral Perfect Absorption and Thermal Emission. Advanced Optical Materials, 2020, 8, 1901502.	7. 3	27
4	Microfluidic surface-enhanced infrared spectroscopy with semiconductor plasmonics for the fingerprint region. Reaction Chemistry and Engineering, 2020, 5, 124-135.	3.7	10
5	Epsilon near-zero all-optical terahertz modulator. Applied Physics Letters, 2020, 117, .	3.3	7
6	Giant Rabi splitting at the phonon line within all-semiconductor metallic-insulator-metallic antennas. Physical Review B, 2019, 100, .	3.2	7
7	Low-pump irradiance to modulate THz waves driven by photo-generated carriers in an InAs slab. , 2019, ,		O
8	Surface-Enhanced Thermal Emission Spectroscopy with Perfect Absorber Metasurfaces. ACS Photonics, 2019, 6, 1506-1514.	6.6	28
9	Terahertz Spectroscopy of Two-Dimensional Semimetal in Three-Layer InAs/GaSb/InAs Quantum Well. JETP Letters, 2019, 109, 96-101.	1.4	4
10	Massless Dirac fermions in III-V semiconductor quantum wells. Physical Review B, 2019, 99, .	3.2	14
11	Semiconductor-based nanostructures for spectral filtering. , 2019, , .		1
12	Pedestal formation of all-semiconductor gratings through GaSb oxidation for mid-IR plasmonics. Journal Physics D: Applied Physics, 2018, 51, 015104.	2.8	5
13	Spectroscopic Nanoimaging of All-Semiconductor Plasmonic Gratings Using Photoinduced Force and Scattering Type Nanoscopy. ACS Photonics, 2018, 5, 4352-4359.	6.6	10
14	Phosphonate monolayers on InAsSb and GaSb surfaces for mid-IR plasmonics. Applied Surface Science, 2018, 451, 241-249.	6.1	12
15	Temperature-dependent terahertz spectroscopy of inverted-band three-layer InAs/GaSb/InAs quantum well. Physical Review B, 2018, 97, .	3.2	24
16	Photogenerated metasurfaces at terahertz frequencies induced by a continuous-wave low pump. Physical Review B, 2018, 98, .	3.2	5
17	Metal-insulator-metal antennas in the far-infrared range based on highly doped InAsSb. Applied Physics Letters, 2017, 111, .	3.3	13
18	Highly doped semiconductor plasmonic nanoantenna arrays for polarization selective broadband surface-enhanced infrared absorption spectroscopy of vanillin. Nanophotonics, 2017, 7, 507-516.	6.0	33

#	Article	IF	CITATIONS
19	Magnetoabsorption of Dirac Fermions in InAs/GaSb/InAs "Three-Layer―Gapless Quantum Wells. JETP Letters, 2017, 106, 727-732.	1.4	5
20	Surface-enhanced infrared absorption with Si-doped InAsSb/GaSb nano-antennas. Optics Express, 2017, 25, 26651.	3.4	15
21	THz absorbers with highly doped semiconductors based in plasmonic nano-resonators. , 2016, , .		0
22	Highly doped InAsSb plasmonic arrays for mid-infrared biosensing. , 2016, , .		0
23	Localized surface plasmon resonance frequency tuning in highly doped InAsSb/GaSb one-dimensional nanostructures. Nanotechnology, 2016, 27, 425201.	2.6	23
24	All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range. Optics Express, 2016, 24, 16175.	3.4	57
25	Terahertz studies of 2D and 3D topological transitions. Journal of Physics: Conference Series, 2015, 647, 012037.	0.4	0
26	Fano-like resonances sustained by Si doped InAsSb plasmonic resonators integrated in GaSb matrix. Optics Express, 2015, 23, 29423.	3.4	10
27	Oxidation of copper nanoparticles in water monitored in situ by localized surface plasmon resonance spectroscopy. RSC Advances, 2014, 4, 20659.	3.6	12
28	Effects of plasmon excitation on photocatalytic activity of Ag/TiO2 and Au/TiO2 nanocomposites. Journal of Catalysis, 2013, 307, 214-221.	6.2	77
29	Photocurrent Phenomena in Nanoribbon InAlN/GaN High Electron Mobility Transistors. Japanese Journal of Applied Physics, 2013, 52, 08JE19.	1.5	0
30	Environmental sensitivity of <i>n-i-n</i> and undoped single GaN nanowire photodetectors. Applied Physics Letters, 2013, 102, .	3.3	21
31	Single GaN-Based Nanowires for Photodetection and Sensing Applications. Japanese Journal of Applied Physics, 2013, 52, 11NG01.	1.5	12
32	Photovoltaic Response of InGaN/GaN Multiple-Quantum Well Solar Cells. Japanese Journal of Applied Physics, 2013, 52, 08JH05.	1.5	22
33	GaN-based nanowire photodetectors. Proceedings of SPIE, 2012, , .	0.8	2
34	Room-Temperature Photodetection Dynamics of Single GaN Nanowires. Nano Letters, 2012, 12, 172-176.	9.1	139
35	Correlation of Polarity and Crystal Structure with Optoelectronic and Transport Properties of GaN/AIN/GaN Nanowire Sensors. Nano Letters, 2012, 12, 5691-5696.	9.1	73
36	Responsivity and photocurrent dynamics in single GaN nanowires. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 642-645.	0.8	6

#	Article	IF	CITATIONS
37	Impact of \$hbox{N}_{2}\$ Plasma Power Discharge on AlGaN/GaN HEMT Performance. IEEE Transactions on Electron Devices, 2012, 59, 374-379.	3.0	22
38	Investigation of different mechanisms of GaN growth induced on AlN and GaN nucleation layers. Journal of Applied Physics, 2009, 105, .	2.5	15
39	Aluminium incorporation in AlxGa1 \hat{a} xN/GaN heterostructures: A comparative study by ion beam analysis and X-ray diffraction. Thin Solid Films, 2008, 516, 8447-8452.	1.8	12
40	Study of SiN _x :H _y passivant layers for AlGaN/GaN high electron mobility transistors. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 518-521.	0.8	1
41	Effects of \$hbox{N}_{2}\$ Plasma Pretreatment on the SiN Passivation of AlGaN/GaN HEMT. IEEE Electron Device Letters, 2008, 29, 209-211.	3.9	36
42	Photoluminescence enhancement in quaternary III-nitrides alloys grown by molecular beam epitaxy with increasing Al content. Journal of Applied Physics, 2008, 103, 046104.	2.5	13
43	2-DEG Characteristics Improvement by N2-plasma exposure in GaN HEMT heterostructures., 2007,,.		O
44	Surface cleaning and preparation in AlGaN/GaN-based HEMT processing as assessed by X-ray photoelectron spectroscopy. Applied Surface Science, 2007, 253, 6185-6190.	6.1	42
45	Quantum wells of dilute nitrides grown on GaAs by molecular beam epitaxy. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 23, 352-355.	2.7	12