Michael Schmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5077337/publications.pdf

Version: 2024-02-01

236612 174990 2,867 79 25 52 citations h-index g-index papers 81 81 81 4146 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Charged Domain Wall and Polar Vortex Topologies in a Room-Temperature Magnetoelectric Multiferroic Thin Film. ACS Applied Materials & Samp; Interfaces, 2022, 14, 5525-5536.	4.0	7
2	Thermal characterization of direct wafer bonded Si-on-SiC. Applied Physics Letters, 2022, 120, 113503.	1.5	2
3	Compositional Tuning of the Aurivilius Phase Material Bi ₅ Ti _{3a 2<i>x</i>} 1+ <i>x</i> Nb _{<i>x</i>} O ₁₅ (0 acceptable accept	1.7	4
4	Large-area growth of MoS ₂ at temperatures compatible with integrating back-end-of-line functionality. 2D Materials, 2021, 8, 025008.	2.0	14
5	Probing Ferroelectric Behavior in Sub- $10\mathrm{nm}$ Bismuth-Rich Aurivillius Films by Piezoresponse Force Microscopy. Microscopy and Microanalysis, 2021, , $1\text{-}11$.	0.2	4
6	Persistence of Ferroelectricity Close to Unit-Cell Thickness in Structurally Disordered Aurivillius Phases. Chemistry of Materials, 2020, 32, 10511-10523.	3.2	9
7	Ferroelectric Behavior in Exfoliated 2D Aurivillius Oxide Flakes of Subâ€Unit Cell Thickness. Advanced Electronic Materials, 2020, 6, 1901264.	2.6	18
8	Long-term stability of transparent n/p ZnO homojunctions grown by rf-sputtering at room-temperature. Journal of Materiomics, 2019, 5, 428-435.	2.8	8
9	Growth of 1T′ MoTe ₂ by Thermally Assisted Conversion of Electrodeposited Tellurium Films. ACS Applied Energy Materials, 2019, 2, 521-530.	2.5	30
10	Diagnosis of phosphorus monolayer doping in silicon based on nanowire electrical characterisation. Journal of Applied Physics, 2018, 123, 125701.	1.1	19
11	Exploring ferroelectric and magnetic properties of Tb-substituted $\langle i \rangle m = 5 \langle i \rangle$ layered Aurivillius phase thin films. Journal of Applied Physics, 2018, 123, .	1.1	17
12	Monolithic integration of patterned BaTiO3 thin films on Ge wafers. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	0.6	6
13	AsH3 gas-phase <i>ex situ</i> doping 3D silicon structures. Journal of Applied Physics, 2018, 124, .	1.1	4
14	Electrochemically modified boron-doped diamond electrode with Pd and Pd-Sn nanoparticles for ethanol electrooxidation. Electrochimica Acta, 2017, 243, 310-319.	2.6	33
15	Stencil lithography of superconducting contacts on MBE-grown topological insulator thin films. Journal of Crystal Growth, 2017, 477, 183-187.	0.7	13
16	Synthesis and characterisation of cross-linked chitosan composites functionalised with silver and gold nanoparticles for antimicrobial applications. Science and Technology of Advanced Materials, 2017, 18, 528-540.	2.8	40
17	Rhenium-doped MoS2 films. Applied Physics Letters, 2017, 111, .	1.5	40
18	Direct atomic scale determination of magnetic ion partition in a room temperature multiferroic material. Scientific Reports, 2017, 7, 1737.	1.6	32

#	Article	IF	CITATIONS
19	Probing Interface Defects in Top-Gated MoS ₂ Transistors with Impedance Spectroscopy. ACS Applied Materials & Defects in Top-Gated MoS ₂ Transistors with Impedance Spectroscopy.	4.0	38
20	Direct visualization of magneticâ€fieldâ€induced magnetoelectric switching in multiferroic aurivillius phase thin films. Journal of the American Ceramic Society, 2017, 100, 975-987.	1.9	34
21	Structural and Electrical Investigation of MoS ₂ Thin Films Formed by Thermal Assisted Conversion of Mo Metal. ECS Journal of Solid State Science and Technology, 2016, 5, Q3016-Q3020.	0.9	6
22	(Invited) Evaluation of Few-Layer MoS2 Transistors with a Top Gate and HfO2 Dielectric. ECS Transactions, 2016, 75, 153-162.	0.3	10
23	Back-gated Nb-doped MoS2 junctionless field-effect-transistors. AIP Advances, 2016, 6, .	0.6	20
24	Air sensitivity of MoS2, MoSe2, MoTe2, HfS2, and HfSe2. Journal of Applied Physics, 2016, 120, .	1.1	134
25	Isolating the Photovoltaic Junction: Atomic Layer Deposited TiO ₂ –RuO ₂ Alloy Schottky Contacts for Silicon Photoanodes. ACS Applied Materials & 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	4.0	25
26	Self-Healing Thermal Annealing: Surface Morphological Restructuring Control of GaN Nanorods. Crystal Growth and Design, 2016, 16, 6769-6775.	1.4	10
27	InAlN high electron mobility transistor Ti/Al/Ni/Au Ohmic contact optimisation assisted by in-situ high temperature transmission electron microscopy. Applied Physics Letters, 2015, 107, 113506.	1.5	6
28	Absence of Evidence ≠Evidence of Absence: Statistical Analysis of Inclusions in Multiferroic Thin Films. Scientific Reports, 2015, 4, 5712.	1.6	23
29	Investigation of Au–Hg amalgam formation on substrate-immobilized individual Au nanorods. Journal of Materials Chemistry C, 2015, 3, 8865-8872.	2.7	29
30	A study of the temperature dependence of the local ferroelectric properties of <i>c</i> -axis oriented Bi6Ti3Fe2O18 Aurivillius phase thin films: Illustrating the potential of a novel lead-free perovskite material for high density memory applications. AIP Advances, 2015, 5, .	0.6	17
31	The Origin of Shape Sensitivity in Palladium atalyzed Suzuki–Miyaura Cross Coupling Reactions. Angewandte Chemie - International Edition, 2014, 53, 4142-4145.	7.2	116
32	Low sheet resistance titanium nitride films by low-temperature plasma-enhanced atomic layer deposition using design of experiments methodology. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, 031506.	0.9	24
33	A bottom-up fabrication method for the production of visible light active photonic crystals. Journal of Materials Chemistry C, 2014, 2, 1675-1682.	2.7	9
34	Stability, Oxidation, and Shape Evolution of PVP-Capped Pd Nanocrystals. Journal of Physical Chemistry C, 2014, 118, 6522-6530.	1.5	57
35	Atomic layer deposition of Cu with a carbene-stabilized Cu(<scp>i</scp>) silylamide. Journal of Materials Chemistry C, 2014, 2, 9205-9214.	2.7	16
36	Enhanced Catalytic Activity of High-Index Faceted Palladium Nanoparticles in Suzuki–Miyaura Coupling Due to Efficient Leaching Mechanism. ACS Catalysis, 2014, 4, 3105-3111.	5.5	83

#	Article	IF	CITATIONS
37	Magnetic Fieldâ€Induced Ferroelectric Switching in Multiferroic Aurivillius Phase Thin Films at Room Temperature. Journal of the American Ceramic Society, 2013, 96, 2339-2357.	1.9	154
38	Electrically active interface defects in the In0.53Ga0.47As MOS system. Microelectronic Engineering, 2013, 109, 182-188.	1.1	22
39	Shell@Core Coaxial NiO@Ni Nanowire Arrays as High Performance Enzymeless Glucose Sensor. Journal of the Electrochemical Society, 2013, 160, B207-B212.	1.3	14
40	InAlAs solar cell on a GaAs substrate employing a graded InxGa1â^'xAsâ€"InP metamorphic buffer layer. Applied Physics Letters, 2013, 102, .	1.5	23
41	Directed self-assembly of PS-b-PMMA block copolymer using HSQ lines for translational alignment. Journal of Materials Chemistry C, 2013, 1, 1192-1196.	2.7	13
42	Investigation of electron mobility in surface-channel Al2O3/In0.53Ga0.47As MOSFETs. Solid-State Electronics, 2013, 88, 37-42.	0.8	6
43	Impact of Surface Nano-textured Stainless Steel Prepared by Focused Ion Beam on Endothelial Cell Growth. Journal of Nanoscience and Nanotechnology, 2013, 13, 5283-5290.	0.9	10
44	FIB Patterning of Stainless Steel for the Development of Nano-structured Stent Surfaces for Cardiovascular Applications. Lecture Notes in Nanoscale Science and Technology, 2013, , 391-416.	0.4	0
45	Optical Emission of a Strained Direct-Band-Gap Ge Quantum Well Embedded Inside InGaAs Alloy Layers. Physical Review Letters, 2013, 110, 177404.	2.9	24
46	Resist–substrate interface tailoring for generating high-density arrays of Ge and Bi2Se3 nanowires by electron beam lithography. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, .	0.6	17
47	Room temperature ferroelectric and magnetic investigations and detailed phase analysis of Aurivillius phase Bi5Ti3Fe0.7Co0.3O15 thin films. Journal of Applied Physics, 2012, 112, .	1.1	40
48	Correlative Microscopy Study of FIB Patterned Stainless Steel Surfaces as Novel Nano-Structured Stents for Cardiovascular Applications. Materials Research Society Symposia Proceedings, 2012, 1466, 26.	0.1	1
49	FIB Patterning of Stainless Steel for the Development of Nano-Structured Stent Surfaces for Cardiovascular Applications. Journal of Physics: Conference Series, 2012, 371, 012065.	0.3	6
50	Fluorine implantation in germanium for dopant diffusion control. AIP Conference Proceedings, 2012, ,	0.3	5
51	Competitive carrier interactions influencing the emission dynamics of GaAsSb-capped InAs quantum dots. Applied Physics Letters, 2012, 101, 231109.	1.5	6
52	Improved reliability of Al <inf>2</inf> 0 <inf>3</inf> /InGaAs/InP MOS structures through in-situ forming gas annealing. , 2012, , .		2
53	Biomineralization Mechanism of Gold by Zygomycete Fungi Rhizopous oryzae. ACS Nano, 2012, 6, 6165-6173.	7.3	146
54	Impact of Forming Gas Annealing on the Performance of Surface-Channel $\frac{0.53}{6.53}$ Mosfers With an ALD $\frac{0.53}{6.2}$ Gate Dielectric. IEEE Transactions on Electron Devices, 2012, 59, 1084-1090.	1.6	52

#	Article	IF	Citations
55	Silicon Nanocrystals in Liquid Media: Optical Properties and Surface Stabilization by Microplasmaâ€Induced Nonâ€Equilibrium Liquid Chemistry. Advanced Functional Materials, 2012, 22, 954-964.	7.8	72
56	The structural and electrical properties of the SrTa2O6/In0.53Ga0.47As/InP system. Microelectronic Engineering, 2011, 88, 1054-1057.	1.1	7
57	The curious case of thin-body Ge crystallization. Applied Physics Letters, 2011, 99, 131910.	1.5	19
58	Germanium Fin Structure Optimization for Future MugFET and FinFET Applications. ECS Transactions, 2011, 35, 27-34.	0.3	1
59	Si/SiO2 multiple quantum wells for all silicon tandem cells: Conductivity and photocurrent measurements. Thin Solid Films, 2008, 516, 6763-6766.	0.8	44
60	Interface Defects in HfO[sub 2], LaSiO[sub x], and Gd[sub 2]O[sub 3] High-k/Metal–Gate Structures on Silicon. Journal of the Electrochemical Society, 2008, 155, G13.	1.3	46
61	<title>Light emission from erbium-doped nanocrystalline silicon/silicon dioxide layers under strong optical excitation</title> ., 2005, , .		0
62	Highly efficient sensitizing of erbium ion luminescence in size-controlled nanocrystalline Si/SiO2 superlattice structures. Applied Physics Letters, 2004, 84, 2512-2514.	1.5	37
63	High-efficiency erbium ion luminescence in silicon nanocrystal systems. Physics of the Solid State, 2004, 46, 104-108.	0.2	1
64	Comparative study of photoluminescence of undoped and erbium-doped size-controlled nanocrystalline Siâ·SiO2 multilayered structures. Journal of Applied Physics, 2004, 96, 2254-2260.	1.1	56
65	Fabrication and photoluminescence properties of erbium doped size-controlled silicon nanocrystals. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 105, 214-220.	1.7	24
66	Photoluminescence of Er3+ ions in layers of quasi-ordered silicon nanocrystals in a silicon dioxide matrix. Journal of Experimental and Theoretical Physics, 2003, 97, 1123-1130.	0.2	0
67	Photoluminescence of Er3+-implanted amorphous hydrogenated silicon suboxides. Physical Review B, 2003, 68, .	1.1	23
68	Synthesis and size control of Si nanocrystals by SiO/SiO2 superlattices and Er doping. Materials Research Society Symposia Proceedings, 2002, 737, 331.	0.1	1
69	Size-controlled highly luminescent silicon nanocrystals: A SiO/SiO2 superlattice approach. Applied Physics Letters, 2002, 80, 661-663.	1.5	789
70	Bright luminescence from erbium doped nc-Si/SiO2 superlattices. Journal of Non-Crystalline Solids, 2002, 299-302, 678-682.	1.5	34
71	Size controlled nc-Si synthesis by SiO/SiO2 superlattices. Journal of Non-Crystalline Solids, 2002, 299-302, 1075-1078.	1.5	36
72	Er doping of nanocrystalline-Si/SiO2 superlattices. Thin Solid Films, 2001, 397, 211-215.	0.8	13

#	Article	IF	CITATION
73	Confinement effects in crystallization and Er doping of Si nanostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 11, 245-251.	1.3	12
74	Room temperature luminescence of Er doped nc-Si/SiO2 superlattices. Journal of Non-Crystalline Solids, 2000, 266-269, 608-613.	1.5	8
75	Local strain distribution of hexagonal GaN pyramids. Journal of Crystal Growth, 1998, 189-190, 630-633.	0.7	17
76	Direct imaging of local strain relaxation along the side facets and the edges of hexagonal GaN pyramids by cathodoluminescence microscopy. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 552-556.	1.3	16
77	Vertical strain and doping gradients in thick GaN layers. Applied Physics Letters, 1997, 71, 2490-2492.	1.5	78
78	Strong morphological dependence of luminescence efficiency and emission wavelength in hexagonal GaN crystallites directly imaged by scanning cathodoluminescence microscopy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 50, 165-169.	1.7	11
79	Spatially resolved investigations of the excitonic luminescence in GaN. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 50, 192-196.	1.7	2