
Saleh A M Saleh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5076593/publications.pdf Version: 2024-02-01

SALEH Δ Μ SALEH

#	Article	IF	CITATIONS
1	Survivability-Based Protection for Electric Motor Drive Systems-Part I: \$3phi\$ Induction Motor Drives. IEEE Transactions on Industry Applications, 2022, 58, 1797-1808.	3.3	7
2	Survivability Analysis of Impacts of Load-Side Activities on Power Systems. IEEE Transactions on Industry Applications, 2022, 58, 1869-1878.	3.3	5
3	On the Factors Affecting Battery Unit Contributions to Fault Currents in Grid-Connected Battery Storage Systems. IEEE Transactions on Industry Applications, 2022, 58, 3019-3028.	3.3	8
4	Employing Battery Storage Systems to Improve Power System Survivability. IEEE Transactions on Industry Applications, 2022, 58, 1858-1868.	3.3	2
5	Energy Not-Served-Based Method for Assessing Smart Grid Functions in Residential Loads. IEEE Transactions on Industry Applications, 2022, 58, 1720-1729.	3.3	1
6	Features and Capabilities of Grounding System Designs. , 2022, , .		5
7	Performance Assessment of the $\hat{I}\pm\hat{I}^20$ -Based Bus Differential Protection. , 2022, , .		0
8	Developing and Testing the Wavelet Modulation Technique for 3φ, 5-Level, PECs. , 2022, , .		0
9	Experimental Testing of The Wavelet Modulation Technique for 3φ, 5-Level, PECs. , 2022, , .		0
10	The Wavelet-Modulation Technique for 5-Level, Power Electronic Converters—Part II: Implementation and Experimental Performance. IEEE Transactions on Industry Applications, 2022, 58, 5819-5831.	3.3	0
11	The Wavelet-Modulation Technique for , 5-Level, Power Electronic Converters—Part I: Development and Testing. IEEE Transactions on Industry Applications, 2022, 58, 5805-5818.	3.3	0
12	The Analysis, Modeling, and Capabilities of Grounding System Designs. IEEE Transactions on Industry Applications, 2022, 58, 5908-5920.	3.3	2
13	Survivability-Based Protection for Three Phase Permanent Magnet Synchronous Motor Drives. IEEE Transactions on Industry Applications, 2022, , 1-8.	3.3	0
14	Evaluating the Impacts of Grounding Systems on Ground Currents and Transient Overvoltage. IEEE Transactions on Industry Applications, 2022, 58, 6002-6013.	3.3	3
15	Experimental Assessment of Grounding System Impacts on Ground Currents and Transient Overvoltage. IEEE Transactions on Industry Applications, 2022, 58, 5987-6001.	3.3	2
16	Balancing Capacitor Voltages in 7-Level Single Phase Flying-Capacitor Wavelet Modulated Inverters. IEEE Transactions on Industry Applications, 2022, , 1-8.	3.3	0
17	Robust Hierarchical Control Mechanism for Aggregated Thermostatically Controlled Loads. IEEE Transactions on Smart Grid, 2021, 12, 453-467.	6.2	30
18	Model-Predictive Control to Minimize Ground Potentials in Transformerless Grid-Connected 5-Level Power Electronic Converters. , 2021, , .		0

#	Article	IF	CITATIONS
19	Bus Differential Protection for Buses Interconnecting Battery Storage Systems. , 2021, , .		3
20	A Virtual Battery-Based Method for Planning Smart Grid Functions for Residential Loads. , 2021, , .		0
21	Testing the Frame-Angle-Based Direct Torque Control for \$3phi\$ Induction Motor Drives. IEEE Transactions on Industry Applications, 2021, 57, 2918-2930.	3.3	4
22	Developing and Testing Model Predictive Control to Minimize Ground Potentials in Transformerless Interconnected Five-Level Power Electronic Converters. IEEE Transactions on Industry Applications, 2021, 57, 3500-3510.	3.3	10
23	Digital Differential Protection for \$3phi\$ Solid-State Transformers. IEEE Transactions on Industry Applications, 2021, 57, 3474-3486.	3.3	9
24	Testing a Bus-Differential Protection for Buses Interconnecting Battery Storage Systems. IEEE Transactions on Industry Applications, 2021, 57, 3511-3521.	3.3	5
25	Planning Smart Grid Functions in Residential Loads Using a Virtual Equivalent Battery Storage Unit. IEEE Transactions on Industry Applications, 2021, 57, 4441-4455.	3.3	2
26	Parameter Adjustment for the Droop Control Operating a Discharge PEC in PMG-Based WECSs With Generator-Charged Battery Units. IEEE Access, 2021, 9, 89064-89078.	2.6	1
27	An Assessment Method for Smart Grid Functions in Residential Loads. , 2021, , .		1
28	Factors Affecting Battery Unit Contributions to Fault Currents in Grid-connected Battery Storage Systems. , 2021, , .		2
29	Employing Battery Storage Systems to Improve Power System Survivability. , 2021, , .		1
30	Survivability-Based Method for Assessing Impacts of Load-Side Activities on Power Systems. , 2021, , .		2
31	Design and Testing of a Frequency-Selective Grounding for \$3phi\$ Power Transformers. IEEE Transactions on Industry Applications, 2020, 56, 74-87.	3.3	24
32	Developing and Testing a Unit-Commitment-Based Controller of Bus-Split Aggregated Residential Electric Water Heaters. IEEE Transactions on Industry Applications, 2020, 56, 1124-1135.	3.3	11
33	Ground Potentials in Transformerless Grid-Connected Multi-Level Power Electronic Converters. , 2020, , .		1
34	Performance Analysis of a Dq Power Flow-Based Energy Storage Control System for Microgrid Applications. IEEE Access, 2020, 8, 178706-178721.	2.6	11
35	A New Structure for PMG-Based WECSs With Battery Storage Systems. IEEE Access, 2020, 8, 190356-190366.	2.6	3
36	On the Ground Potentials and Grounding Circuits of Transformerless Grid-Connected Multilevel Power Electronic Converters. IEEE Transactions on Industry Applications, 2020, 56, 6286-6297.	3.3	8

#	Article	IF	CITATIONS
37	Testing the Performance of a \$dq0\$ Phaselet Transform Based Digital Differential Protection for \$3phi\$ Converter Transformers. IEEE Transactions on Industry Applications, 2020, 56, 6258-6271.	3.3	10
38	Employing Fault Currents in the Reliability Analysis of Motor Drives. IEEE Transactions on Industry Applications, 2020, , 1-1.	3.3	4
39	A New Approach for Estimating Frequency Variations Due to Smart Grid Functions. IEEE Transactions on Industry Applications, 2020, 56, 2292-2303.	3.3	8
40	Selecting Locations and Sizes of Battery Storage Systems Based on the Frequency of the Center of Inertia and Principle Component Analysis. IEEE Transactions on Industry Applications, 2020, 56, 1040-1051.	3.3	9
41	ANSI 87T-Based Differential Protection of 3ï• Solid-State Transformers. , 2020, , .		2
42	An Energy-Based Benchmark for Smart Grid Functions in Residential Loads. , 2020, , .		2
43	Frame-Angle-Based Direct Torque Control for 3ï• Induction Motor Drives. , 2020, , .		Ο
44	The State-of-the-Art Methods for Digital Detection and Identification of Arcing Current Faults. IEEE Transactions on Industry Applications, 2019, 55, 4536-4550.	3.3	32
45	Solid-State Transformers for Distribution Systems–Part I: Technology and Construction. IEEE Transactions on Industry Applications, 2019, 55, 4524-4535.	3.3	56
46	Estimating Frequency Changes Due to Smart Grid Functions. , 2019, , .		6
47	Frequency-Selective Grounding for 3ï• Power Transformers. , 2019, , .		Ο
48	Solid-State Transformers for Distribution Systems–Part II: Deployment Challenges. IEEE Transactions on Industry Applications, 2019, 55, 5708-5716.	3.3	42
49	Bottom-Up Load Forecasting With Markov-Based Error Reduction Method for Aggregated Domestic Electric Water Heaters. IEEE Transactions on Industry Applications, 2019, 55, 6401-6413.	3.3	23
50	Solid-State Transformers for Distribution Systems: Technology, Performance, and Challenges. , 2019, ,		3
51	State-of-the-Art Methods for Detecting and Identifying Arcing Current Faults. , 2019, , .		3
52	Comparing the Performance of Protection Coordination and Digital Modular Protection for Grid-Connected Battery Storage Systems. IEEE Transactions on Industry Applications, 2019, 55, 2440-2454.	3.3	17
53	Extending the Frame-Angle-Based Direct Torque Control of PMSM Drives to Low-Speed Operation. IEEE Transactions on Industry Applications, 2019, 55, 3138-3150.	3.3	7
54	A New Isolated DC–DC Converter for Discontinuous Input and Continuous Output. IEEE Transactions on Industry Applications, 2019, 55, 4215-4224.	3.3	11

#	Article	IF	CITATIONS
55	Unit Commitment-Based Control of Bus-Split Aggregated Electric Water Heaters. , 2019, , .		1
56	dq0 PHT-Based Digital Differential Protection for 3 \ddot{l} Converter Transformers. , 2019, , .		2
57	A Symmetrical Component Feature Extraction Method for Fault Detection in Induction Machines. IEEE Transactions on Industrial Electronics, 2019, 66, 7281-7289.	5.2	28
58	On the Performance of the Frame-Angle Controller for <inline-formula> <tex-math notation="LaTeX">\$3phi\$ </tex-math </inline-formula> Interconnected PV Systems. IEEE Transactions on Industry Applications, 2019, 55, 1189-1201.	3.3	1
59	Testing a Unit Commitment Based Controller for Grid-Connected PMG-Based WECSs With Generator-Charged Battery Units. IEEE Transactions on Industry Applications, 2019, 55, 2185-2197.	3.3	11
60	Phaselet Transform Based Approach for Detecting Voltage Flickers Due to Distributed Generation Units. IEEE Transactions on Industry Applications, 2018, 54, 5278-5292.	3.3	11
61	Testing the Performance of Bus-Split Aggregation Method for Residential Loads. IEEE Transactions on Industry Applications, 2018, 54, 39-49.	3.3	12
62	Testing the Performance of the Digital Modular Protection for Grid-Connected Battery Storage Systems. IEEE Transactions on Industry Applications, 2018, 54, 2059-2070.	3.3	7
63	Performance of Multiframe Digital Interconnection Protection for Distributed Cogeneration Systems. IEEE Transactions on Industry Applications, 2018, 54, 1166-1181.	3.3	10
64	The Formulation of a Power Flow Using \$dext{}q\$ Reference Frame Components—Part II: Unbalanced \$3phi\$ Systems. IEEE Transactions on Industry Applications, 2018, 54, 1092-1107.	3.3	8
65	The Development and Performance Evaluation of a Frame-Angle-Based Direct Torque Controller for PMSM Drives. IEEE Transactions on Industry Applications, 2018, 54, 2806-2820.	3.3	7
66	Testing the Performance of the Wavelet Modulation Technique for <inline-formula> <tex-math notation="LaTeX">\$1phi\$ </tex-math </inline-formula> CHB Multilevel DC–AC Power Electronic Converters. IEEE Transactions on Industry Applications, 2018, 54, 2885-2898.	3.3	6
67	Multistage and Multilevel Power Electronic Converter-Based Power Supply for Plasma DBD Devices. IEEE Transactions on Industrial Electronics, 2018, 65, 5466-5475.	5.2	34
68	A Modified Bus-Split Method for Aggregating Distributed Generation Units. IEEE Transactions on Industry Applications, 2018, 54, 1080-1091.	3.3	2
69	Unit Commitment Based Controller for Grid-Connected PMG-Based WECSs with Battery Storage Units. , 2018, , .		1
70	Integrated Multi-Horizon Power and Energy Forecast for Aggregated Electric Water Heaters. , 2018, , .		2
71	Performance Evaluation of an Isolated DC-DC Converter with Discontinuous Supply. , 2018, , .		2
72	The Performance of the Frame-Angle-Based Direct Torque Controller for PMSM Drives at Low and Very Low Speeds. , 2018, , .		3

5

#	Article	IF	CITATIONS
73	On the Comparison Between the Protection Coordination and Digital Modular Protection for Grid-Connected Battery Storage Systems. , 2018, , .		1
74	Performance Testing of an Active Multiport DC Link for Grid-Connected PMG-Based WECSs. IEEE Transactions on Industry Applications, 2018, 54, 5579-5589.	3.3	10
75	A new multi-port active DC-link for PMG-based WECSs. , 2018, , .		4
76	Frame-angle-based controller for 3ï† interconnected PV systems. , 2018, , .		1
77	On the Experimental Performance of a Coordinated Antiislanding Protection for Systems With Multiple DGUs. IEEE Transactions on Power Electronics, 2017, 32, 1106-1123.	5.4	6
78	Testing the Performance of a Resolution-Level MPPT Controller for PMG-Based Wind Energy Conversion Systems. IEEE Transactions on Industry Applications, 2017, 53, 2526-2540.	3.3	25
79	Evaluating the Performance of Digital Modular Protection for Grid-Connected Permanent-Magnet-Generator-Based Wind Energy Conversion Systems With Battery Storage Systems. IEEE Transactions on Industry Applications, 2017, 53, 4186-4200.	3.3	15
80	Observer-based predictive current controller for grid-connected single-phase wind converter. , 2017, ,		1
81	A new digital protection for grid-connected battery storage systems. , 2017, , .		2
82	The bus-split method for residential load aggregation. , 2017, , .		3
83	Disturbance-estimator predictive current controller for 1ï† interconnected PV systems. , 2017, , .		Ο
84	Digital modular protection for grid-connected PMG-based WECSs with battery storage systems. , 2017, , ,		3
85	Power controller for PMC-based WECSs with battery storage systems. , 2017, , .		4
86	Load Aggregation From Generation-Follows-Load to Load-Follows-Generation: Residential Loads. IEEE Transactions on Industry Applications, 2017, 53, 833-842.	3.3	59
87	The Analysis and Development of a Power Flow-Based Controller for Microgrid Systems. IEEE Transactions on Industry Applications, 2017, 53, 843-854.	3.3	2
88	Phaselet-Based Method for Detecting Electric Faults in \$3phi\$ Induction Motor Drives—Part II: Performance Evaluation. IEEE Transactions on Industry Applications, 2017, 53, 2988-2996.	3.3	10
89	Phaselet-Based Method for Detecting Electric Faults in \$3phi\$ Induction Motor Drives—Part I: Analysis and Development. IEEE Transactions on Industry Applications, 2017, 53, 2976-2987.	3.3	13
90	The wavelet modulation technique for 1φ CHB multi-level DC-AC power electronic converters. , 2017, , .		2

90 The wavelet modulation technique for 1 \ddot{l} CHB multi-level DC-AC power electronic converters. , 2017, , .

#	Article	IF	CITATIONS
91	Distributed energy storage unit-based active demand response for residential loads. , 2017, , .		10
92	The formulation and testing of extended DQPF method for unbalanced 3ï† systems. , 2017, , .		1
93	Frame-angle-based direct torque controller for PMSM drives. , 2017, , .		1
94	The application of bus-split method for aggregating distributed generation units. , 2017, , .		1
95	The Formulation of a Power Flow Using <inline-formula> <tex-math notation="LaTeX">\$d-q\$ </tex-math </inline-formula> Reference Frame Componentsâ€"Part I: Balanced <inline-formula> <tex-math notation="LaTeX">\$3phi\$ </tex-math> </inline-formula> Systems. IEEE Transactions on Industry Applications. 2016. 52. 3682-3693.	3.3	20
96	The development and formulation of a power flow using d - q reference frame components. , 2016, , .		3
97	Developing and testing a digital interconnection protection for grid-connected WECSs. , 2016, , .		2
98	Load aggregation from generation-follows-load to load-follows-generation. , 2016, , .		13
99	The Performance of a Digital Interconnection Protection for Grid-Connected WECSs. IEEE Transactions on Industry Applications, 2016, 52, 3714-3728.	3.3	6
100	The Development of a Coordinated Anti-Islanding Protection for Collector Systems With Multiple Distributed Generation Units. IEEE Transactions on Industry Applications, 2016, 52, 4656-4667.	3.3	8
101	The development of a power flow-based controller for micro-grid systems. , 2016, , .		2
102	The development and testing of a coordinated anti-islanding protection for collector systems with multiple distributed generation units. , 2016, , .		2
103	Phase-Based Digital Protection for Arc Flash Faults. IEEE Transactions on Industry Applications, 2016, 52, 2110-2121.	3.3	13
104	Performance of the Phaselet Frames-Based Digital Protection for Distributed Generation Units. IEEE Transactions on Industry Applications, 2016, 52, 2095-2109.	3.3	20
105	Performance Evaluation of the ZIP Model-Phaselet Frame Approach for Identifying Appliances in Residential Loads. IEEE Transactions on Industry Applications, 2016, 52, 3408-3421.	3.3	20
106	Apparent Power-Based Anti-Islanding Protection for Distributed Cogeneration Systems. IEEE Transactions on Industry Applications, 2016, 52, 83-98.	3.3	42
107	Influences of Power Electronic Converters on Voltage–Current Behaviors During Faults in DGUs—Part II: Photovoltaic Systems. IEEE Transactions on Industry Applications, 2015, 51, 2832-2845.	3.3	43
108	On the Design and Capacity of a Grounding Configuration for Grid-Connected <roman>DGUs</roman> . IEEE Transactions on Industry Applications, 2015, 51, 5366-5375.	3.3	26

#	Article	IF	CITATIONS
109	Impacts of Grounding Configurations on Responses of Ground Protective Relays for DFIG-Based WECSs—Part I: Solid Ground Faults. IEEE Transactions on Industry Applications, 2015, 51, 2804-2818.	3.3	34
110	Influences of Power Electronic Converters on Voltage–Current Behaviors During Faults in DGUs—Part I: Wind Energy Conversion Systems. IEEE Transactions on Industry Applications, 2015, 51, 2819-2831.	3.3	22
111	Extracting the phase of fault currents: A new approach for identifying arc flash faults. , 2015, , .		3
112	Impacts of grounding configurations on responses of ground protective relays for DFIG-based WECSs-Part II: High-impedance ground faults. , 2015, , .		1
113	Instantaneous apparent power-based anti-islanding for distributed co-generation systems. , 2014, , .		ο
114	Implementing and Testing \$d\$– \$q\$ WPT-Based Digital Protection for Microgrid Systems. IEEE Transactions on Industry Applications, 2014, 50, 2173-2185.	3.3	38
115	Signature-Coordinated Digital Multirelay Protection for Microgrid Systems. IEEE Transactions on Power Electronics, 2014, 29, 4614-4623.	5.4	41
116	Impacts of grounding configurations on responses of ground protective relays for DFIG-based WECSs. , 2014, , .		15
117	Antiislanding Protection Based on Signatures Extracted From the Instantaneous Apparent Power. IEEE Transactions on Power Electronics, 2014, 29, 5872-5891.	5.4	24
118	Embedded digital protection for IPMSM drives. , 2013, , .		0
119	Real-time testing of Newton-phaselet method for calculating the power factor of single phase loads. , 2013, , .		3
120	The Implementation and Performance Evaluation of \$3phi\$ VS Wavelet Modulated AC–DC Converters. IEEE Transactions on Power Electronics, 2013, 28, 1096-1106.	5.4	21
121	Resolution-Level-Controlled WM Inverter for PMC-Based Wind Energy Conversion System. IEEE Transactions on Industry Applications, 2012, 48, 750-763.	3.3	33
122	Digital multi-relay protection for micro-grid systems. , 2012, , .		8
123	Optimized resolution-level for input-output control of 3ϕ VS WM AC-DC converters. , 2012, , .		Ο
124	The Development of a \$d\$–\$q\$ Axis WPT-Based Digital Protection for Power Transformers. IEEE Transactions on Power Delivery, 2012, 27, 2255-2269.	2.9	33
125	Wavelet-Based Signal Processing Method for Detecting Ice Accretion on Wind Turbines. IEEE Transactions on Sustainable Energy, 2012, 3, 585-597.	5.9	34
126	The analysis and development of controlled 3φ wavelet modulated AC-DC converter. , 2012,		0

#	Article	IF	CITATIONS
127	Analysis and Development of Wavelet Modulation for Three-Phase Voltage-Source Inverters. IEEE Transactions on Industrial Electronics, 2011, 58, 3330-3348.	5.2	42
128	Development and Experimental Validation of Resolution-Level Controlled Wavelet-Modulated Inverters for Three-Phase Induction Motor Drives. IEEE Transactions on Industry Applications, 2011, 47, 1958-1970.	3.3	20
129	Development and Testing of a New Controlled Wavelet-Modulated Inverter for IPM Motor Drives. IEEE Transactions on Industry Applications, 2010, 46, 1630-1643.	3.3	27